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Supplements
Derivation of TPS
The derivation of TPS refers to (Shi et al. 2016). We define
the TPS transformation that receives input images or feature
maps U with size of U ∈ RH×W×C , where H,W,C de-
note the region’s height, width and channels separately, and
it generates the output as V ∈ RH′×W ′×C . TPS learns 2×N
fiducial points in the input feature map, i.e., P ∈ RN×2.
We denote the fiducial points in the output feature map as
P ′ ∈ RN×2 (corresponding to P ∗ in the main paper), which
are preset constant value.

Forward Process For every mapped fiducial points in out-
put feature map P ′, denoted as p′i = (x′i, y

′
i) , we calculate

the TPS transform like:(
xi

yi

)
= TPS(p′i) =

(
∆−1p′

[
PT

03×2

])T
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2
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2
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where ∆−1p′ is a matrix with size of (N + 3)× (N + 3), and
computed by the transformed fiducial points in P ∗:

∆p′ =

[
KN×N P 3×N

P 3×NT
03×3

]
(2)

where

P 3×N =

 1 x1 y1
1 x2 y2
... ... ...
1 xk yk

 (3)

KN×N =

 0 U(r12) ... U(r1N )
U(r21) 0 ... U(r2N )

... ... ... ...
U(rN1) U(rN2) ... 0

 ,

U(rik) = d2i,k ln d2i,k

(4)

Note that all computations are conducted after the nor-
malization between [−1, 1].
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Therefore, for every sampled pixel in the input image, we
can calculate a mapped target pixel. Then, the output image
can be formed as:

V c
i =

H∑
h

W∑
w

U c
hwk(xi − w; Φx)k(yi − h; Φy),

∀i ∈ [1...H ′W ′],∀c ∈ [1, ...C]

(5)

where Φx and Φy are the parameters of sampling kernel
function k(.). For example, if we adopt the bilinear inter-
polation algorithm, it can be calculated as:

V c
i =

H∑
h

W∑
w

U c
hwmax(0, 1− |xi − w|)k(0, 1− |yi − h|),

∀i ∈ [1...H ′W ′],∀c ∈ [1, ...C]
(6)

Backward Process We should define the gradients be-
tween the output loss and input images U and their sampled
points. The computation of sampling is differentiable. For
bilinear interpolation, the partial differential can be formed
as:
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(7)
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(9)

Above formulas calculate the loss gradients to input feature
maps as well as the sampled points, which is corresponding



to the ∂R∗
∂R in formula-(10) of the main paper. Furthermore,

we also need to get the gradients to the fiducial points, i.e.,
∂R∗
∂R

∂R
∂P in formula-(11) of the main paper. For TPS, it is

computed as the multiplication of two matrix, and so is dif-
ferentiable.
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In this way, we directly obtain the ∂xi

∂P and ∂yi

∂P from above
computation. According to the chain rule, the gradients to
those fiducial points are formed as:
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(12)

Note that the fiducial points in original STN (Shi et al.
2016) are only supervised by the recognition, which, in prac-
tice are hard to be optimized. In our settings, the fiducial
points of input images are generated by the help of the pro-
posed detector, which can be optimized much more efficient
and effective.

Detection Results Comparison on IC15

Method Precision Recall F-Measure FPS
Zhang et al.(2016) 71.0 43.0 54.0 0.5
He et al. (2017b) 82.0 80.0 81.0 1.1
SSTD (2017a) 80.0 73.0 77.0 7.7
EAST (2017) 83.6 73.5 78.2 13.2
He et al. (2018) 87.0 86.0 87.0 -
FOTS (2018) 91.0 85.2 88.0 7.8
TextSnake* (2018) 84.9 80.4 82.6 1.1
TextField* (2019) 84.3 80.5 82.4 5.2
FTSN* (2018) 88.6 80.0 84.1 -
SPCNet* (2019) 88.7 85.8 87.2 -
PSENet-1s* (2019a) 86.9 84.5 85.7 1.6
LOMO* (2019) 83.5 91.3 87.2 -
Wang et al.* (2019b) 86.0 89.2 87.6 10.0
Tian et al.* (2019) 85.0 88.3 86.6 -
CRAFT* (2019) 84.3 89.8 86.9 8.6
TextNet* (2018) 89.4 85.4 87.4 -
Mask TextSpotter* (2018) 91.6 81.0 86.0 4.8
Ours (2-stage) 91.6 81.8 86.4 8.8
Ours (End-to-end) 92.3 82.5 87.1 8.8

Table 1: Detection Results on IC15. Superscript ‘*’ means
that the method considered the detection of irregular text.

Table 1 shows the performance of the detection task on
IC15. Our method obtains the highest precision and a rela-
tive fast running speed. Although it doesn’t reach the highest
F-measure among all of the methods, the result still demon-
strates that our method is compatible with the of the previous
state-of-the-art methods.

Visualization Result
Figure 1 and Figure 2 demonstrate some visualization results
from IC13/IC15/Total-Text/CTW1500 dataset. Text Percep-
tron shows its powerful ability in catching the reading order
of scene text, and with the help of fiducial points which can
further recognize text in a much simpler way. From the seg-
mentation results, we can also find many of text-like false
positives have been filtered out due to the missing of head or
tail boundary. This means the features of head or tail bound-
aries may have different semantic information with that of
the center region.

Figure 3: Example of comparison between two-stage evalu-
ation and end-to-end training evaluation.

Figure 3 demonstrates an example that how end-to-end
training boosts the localization of fiducial points. Only su-
pervised by detection annotation sometimes cannot obtain
a group of perfect positions of fiducial points, although it
meets the requirement of detection. In end-to-end training
manner, the positions of fiducial points may be dynamical-
ly tuned by the supervision of following recognition task,
which finally generates a reasonable recognition result.

Failure Samples

Figure 4: Visualization of some failure samples.

We illustrate some failure samples that are difficult for
Text Perceptron, as shown in Figure 4.



Figure 1: Visualization result on IC13 and IC15. The first row displays the segmented results and the second row shows the
end-to-end results.

Figure 2: Visualization result on Total-Text and CTW1500. The first row displays the segmented results and the second row
shows the end-to-end results. Fiducial points are also visualized as colored points on text boundaries.



Overlap text. It is a common tough task for segmentation-
based detection methods. Pixels belong to the center text
region for one text instance may also become the boundary
region for another one. Even though our orderly overlaying
strategy allows pixels to have multiple classes and makes
boundary pixels have higher priority than center text pixel-
s, which encourages inner instance to be separated from the
outer instance. But experiments found that many times, the
boundaries of inner instance cannot be fully recalled to em-
brace such instance, and connecting between center pixels
will result in the failure of detecting such inner an instance.

Recognition of vertical instance. On the one hand, verti-
cal texts appear in little frequency in the common datasets.
One the other hand, although Text Perceptron can read ver-
tical instances from left to right, it is still a challenge for
recognition algorithm to distinguish whether the instance is
a horizontal text or a ’lying-down’ vertical one. Therefore,
there are some correctly detected instances cannot be rec-
ognized right. It is also a common difficult problem for all
existing recognition algorithms.
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