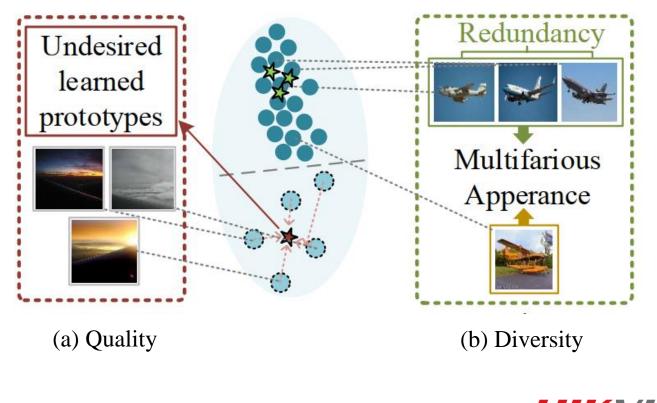
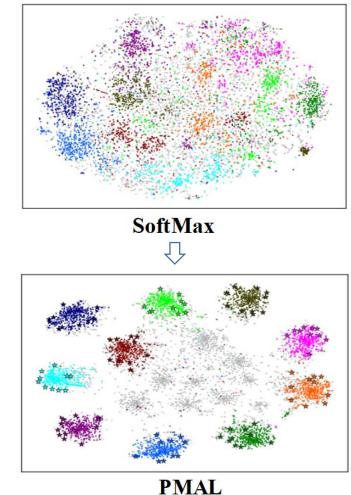
PMAL: Open Set Recognition via Robust Prototype Mining

• Problems of learning protoypes in OSR

●High quality sample ●Low quality sample ☆ Prototype



Effect Visualization



Contact E-mail: lujing6@hikvision.com Jing Lu

TinyImageNet

PMAL: Open Set Recognition via Robust Prototype Mining

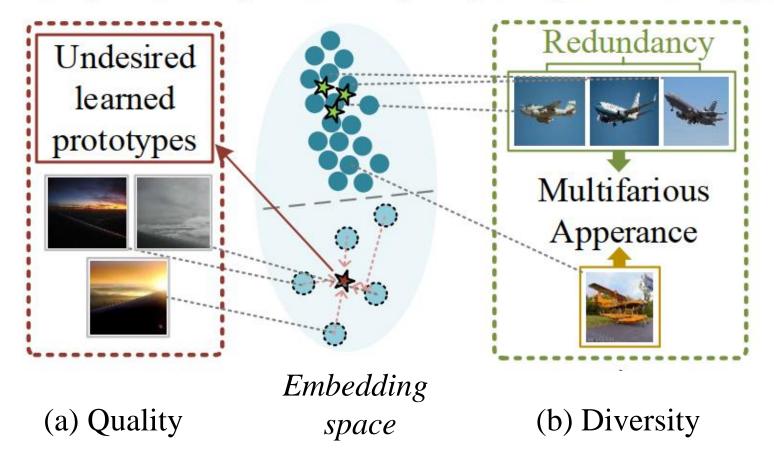
Jing Lu^{1*}, Yunlu Xu^{1*}, Hao Li¹, Zhanzhan Cheng^{1,2†}, Yi Niu¹

¹ Hikvision Research Institution, Hangzhou, China ² Zhejiang University, Hangzhou, China {lujing6, xuyunlu, lihao50, chengzhanzhan, niuyi}@hikvision.com

Problems

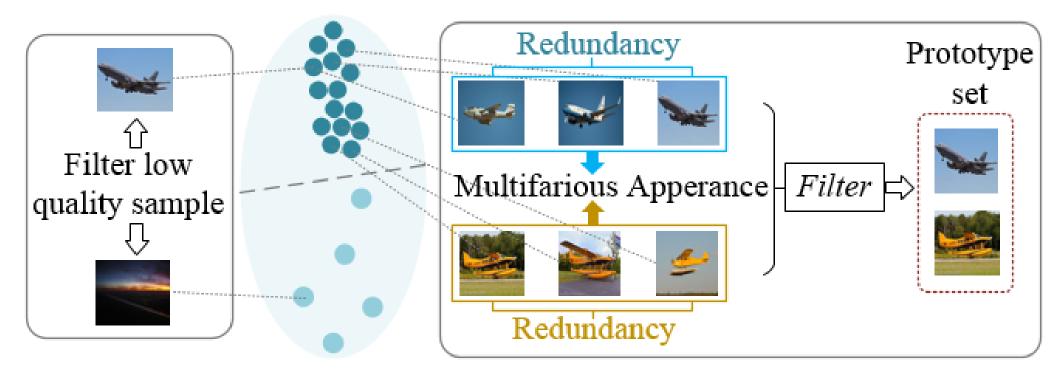
• Implicit Learned Prototypes

●High quality sample ●Low quality sample ☆ Prototype



Motivation

• *Explicit* Prototype Mining: PMAL

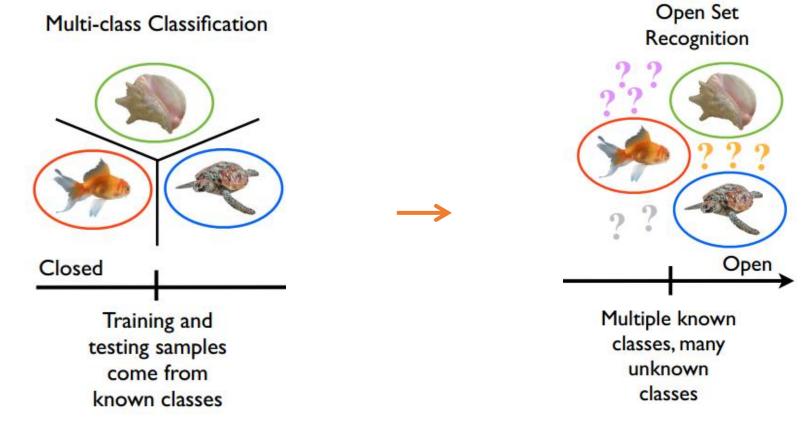


(a) *Mine High-quality Candidates*

(b) Filter with diversity

Preliminary

• Open Set Recognition(OSR)



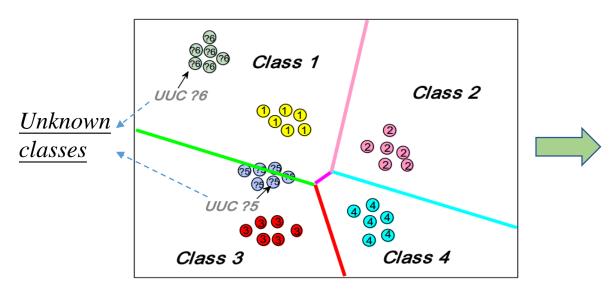
Ideal: Close Set Assumption

• Actually: Open Set Environment

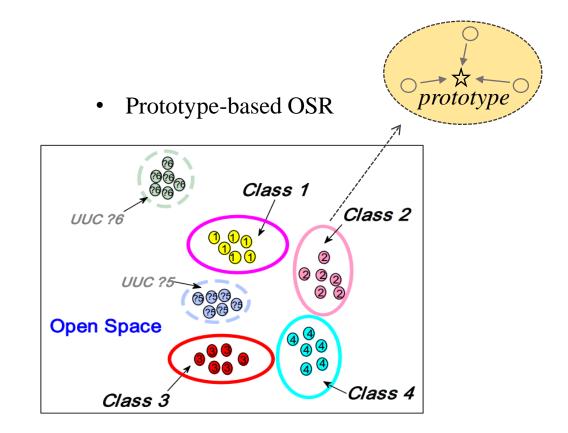
Scheirer, W. J., et al. 2013. Towards Open Set Recognition. TPAMI.

Preliminary

- Prototype-based OSR
 - Softmax-based close-set recognition



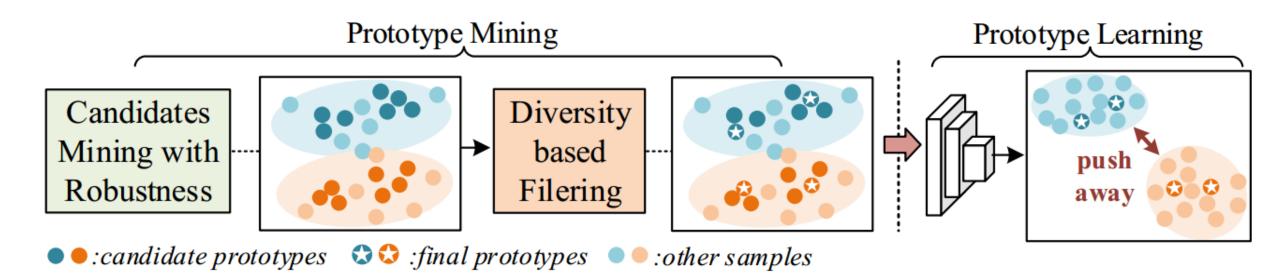
✓ Unable to tell UNKNOWN classes



- ✓ Learn compact intra-class embedding
- ✓ Reserve more space for UNKNOWN classes

Jaderberg, M, et al. 2015. Spatial Transformer Networks. NeurIPS.

• Overview of PMAL



Mine *high-quality* samples as prototype candidates \bullet

High-quality samples satisfy^[2]: □ Data uncertainty modelling^[1] Equal 1: $z(x_i) = \phi(x_i) + n(x_i), \ n(x_i) \sim \mathcal{N}(0, \sigma(x_i)) \quad \Box >$ $z_i \approx \phi_i$ \Box For a high-quality samples x_i **•** Key properties of high-quality samples Equal 2: $d_{\mathcal{M}}(\phi_i^1, \phi_j^1) \approx d_{\mathcal{M}}(\phi_i^2, \phi_j^2)$ Embedding Mahalanobis distance space Z^{l} **D** Embedding Topology Equal 3: $t(z_i) \triangleq (d_{\mathcal{M}}(z_i, z_1), ..., d_{\mathcal{M}}(z_i, z_N))$ Embedding **D** Embedding Topology robustness space Z^2 Equa. 4: $r(x_i) \triangleq exp(-||t(z_i^1) - t(z_i^2)||_2)$

(a)

- Mine *high-quality* samples as prototype candidates
 - ✓ Data uncertainty modelling^[1]

Equal 1: $z(x_i) = \phi(x_i) + n(x_i), \ n(x_i) \sim \mathcal{N}(0, \sigma(x_i)) \quad \Box >$

✓ Key properties of high-quality samples

Equa. 2:

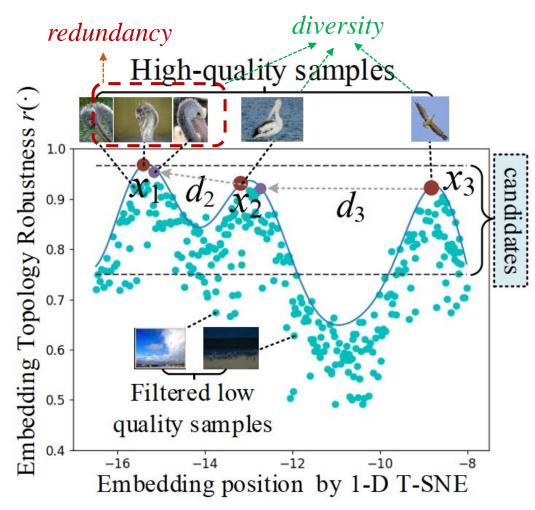
Mahalanobis distance

✓ Embedding Topology robustness Equa. 3: $t(z_i) \triangleq (d_{\mathcal{M}}(z_i, z_1), ..., d_{\mathcal{M}}(z_i, z_N))$ Equa. 4: $r(x_i) \triangleq exp(-||t(z_i^1) - t(z_i^2)||_2)$

 $d_{\mathcal{M}}(\phi_i^1,\phi_j^1) \approx d_{\mathcal{M}}(\phi_i^2,\phi_j^2)$

High-quality samples satisfy^[2]: $z_i \approx \phi_i$ \Box For a low-quality samples x_i Embedding space Z^{I} Embedding space Z^2 (b)

• Filter with diversity



Local maximum robustnessLarge embedding distance

• Greedy filtering algorithm

 $P_{k} = \bigcup_{i=1}^{T} \{ x_{i} | \max_{x_{i} \in C_{k}} \{ \min_{x_{j} \in C_{k}} d_{\mathcal{M}}(z_{i}, z_{j}) | r(x_{j}) > r(x_{i}) \} \}$

 C_k : candidate set of class k

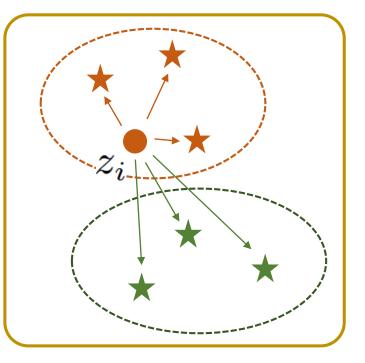
 P_k : final prototype set of class k

- Embedding optimization
 - ✓ Point to Set distance

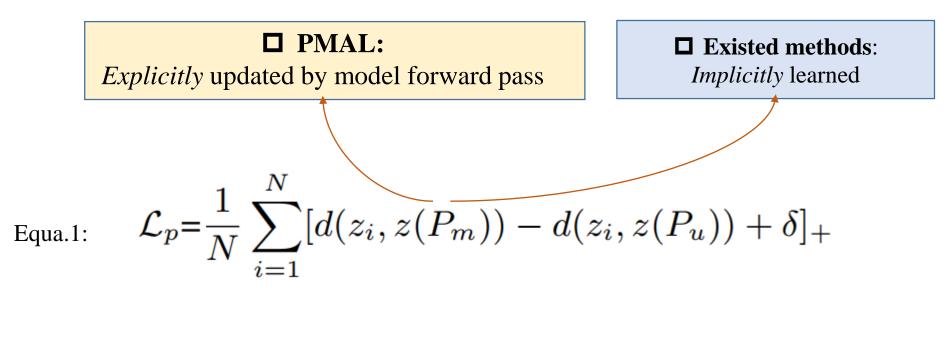
$$z_i \xrightarrow{query} z(P_k) = (z(p_{k,1}), ..., z(p_{k,T})) \in \mathbb{R}^{D \times T}$$

Equa.1:
$$z_i^{att}(P_k) = SoftMax(\frac{z_i^{\mathrm{T}} z(P_k)}{\sqrt{d}}) z(P_k)$$

 \bigcirc
Equa.2: $d(z_i, z(P_k)) = 1 - \frac{z_i^{\mathrm{T}} z_i^{att}(P_k)}{|z_i^{\mathrm{T}}||z_i^{att}(P_k)|}$



• Embedding optimization



Equa.2:
$$P_u = \underset{P_k \in P \setminus P_m}{\operatorname{arg\,min}} \left(d(z_i, z(P_k)) \right)$$

Ablation

• Each component

Table 3: Ablations of each module on TinyImageNet.										
С	omponents	(a)	(b)	(c)	(d)	(e)	(f)			
PM	High-Quality	\checkmark	1	\checkmark		\checkmark	\checkmark			
I IVI	Diversity		\checkmark		\checkmark	\checkmark	\checkmark			
EO	Point-to-Set		1	\checkmark	\checkmark		\checkmark			
	AUROC	80.3	78.1	81.6	80.2	81.9	83.1			

- Both high quality and diversity matters for prototypes.
- Point-to-set distance helps learning better embedding space.

Ablation

• Each component

14	ole 5. Adiation				I IIIIyI	finager	(CL.
С	components	(a)	(b)	(c)	(d)	(e)	(f)
PM	High-Quality	\checkmark		\checkmark		\checkmark	\checkmark
	Diversity		\checkmark		\checkmark	\checkmark	\checkmark
EO	Point-to-Set			\checkmark	\checkmark		\checkmark
	AUROC	80.3	78.1	81.6	80.2	81.9	83.1
						·/	×

Table 3: Ablations of each module on TinyImageNet.

- Both high quality and diversity matters for prototypes. ٠
- Point-to-set distance helps learning better embedding space. ٠

Ablation

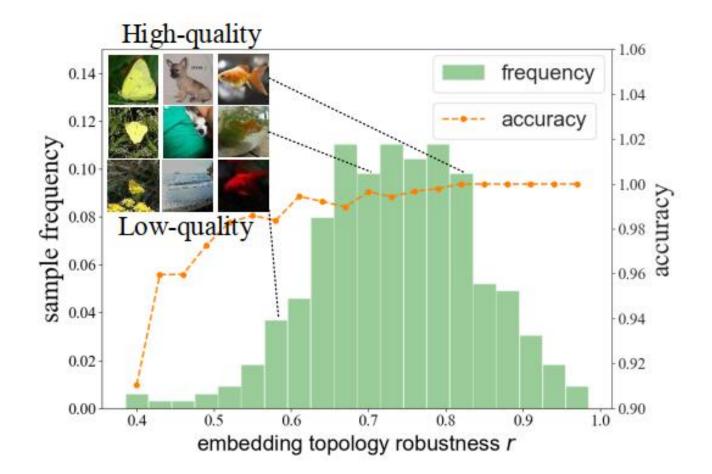
• Replace components in PM with existed strategies

Table 4: Comparisons with other methods on the *quality* and *diversity* property.

		Method	ACC	AUROC
Mine Hick quality	Г	(a)Probability	81.9	79.3
Mine High-quality Candidates	4	(b)Deep Ensembles	82.3	80.5
Cunatuates	L	(c)MC-dropout	81.6	78.8
Diversity	Г	(a)Randomization	81.5	79.1
filtering	1	(b)Clustering	81.8	79.6
v O		Ours	84.7	83.1

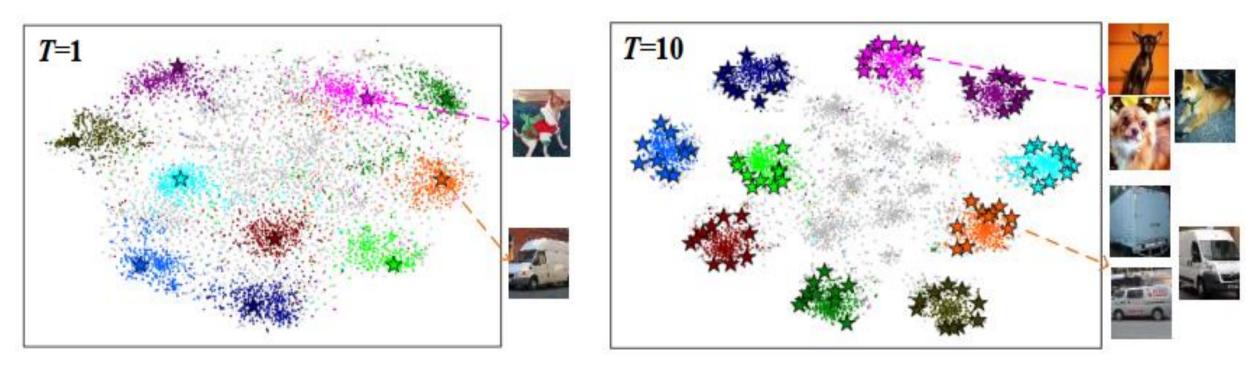
Visualization

• High quality



Visualization

• Diversity

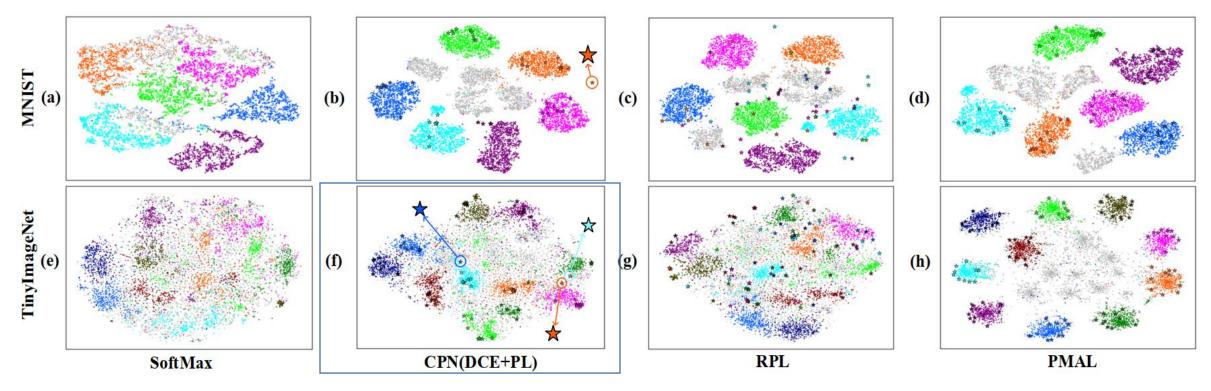


✓ Multifarious prototypes

Visualization

• Embedding space

Each color denotes different classes and 'gray' denotes unknowns



- On *simple* MNIST, all prototype-based methods performs satisfying.
- On more *complex* TinyImageNet, PMAL performs much better.

Performance

• Mainstream small-scale benchmarks

Table 1: Close set ACC and Open set AUROC on small datasets. '*' denotes implemented results and 'C' is short for 'CIFAR'.

Methods			Close set	t ACC			Open set AUROC					
Wiethous	MNIST	SVHN	C10	C+10	C+50	TINY	MNIST	SVHN	C10	C+10	C+50	TINY
SoftMax	99.5	94.7	80.1	-	-	-	97.8	88.6	67.7	81.6	80.5	57.7
CPN (Yang et al.)	99.7	96.7	92.9	94.8*	95.0*	81.4*	99.0	92.6	82.8	88.1	87.9	63.9
PROSER (Zhou, Ye, and Zhan)	-	96.5	92.8	-	-	52.1	94.3	-	89.1	96.0	95.3	69.3
CGDL (Sun et al.)	99.6	94.2	91.2	-	-	-	99.4	93.5	90.3	95.9	95.0	76.2
OpenHybrid (Zhang et al.)	94.7	92.9	86.8	-	-	-	99.5	94.7	95.0	96.2	95.5	79.3
RPL-OSCRI (Chen et al.)	99.5*	95.3*	94.3*	94.6*	94.7*	81.3*	99.3	95.1	86.1	85.6	85.0	70.2
ARPL (Chen et al.)	99.5	94.3	87.9	94.7	92.9	65.9	99.7	96.7	91.0	97.1	95.1	78.2
RPL-WRN (Chen et al.)	99.6*	95.8*	_95.1*_	95.5*	<u>95.9*</u>	81.7*	99.6	96.8	90.1	97.6	96.8	80.9
PMAL-OSCRI	99.6	96.5	96.3	96.4	96.9	84.4	99.5	96.3	94.6	96.0	94.3	81.8
PMAL-WRN	99.8	97.1	97.5	97.8	98.1	84.7	99.7	97.0	95.1	97.8	96.9	83.1
	/											

Performance

• Mainstream small-scale benchmarks

Table 1: Close set ACC and Open set AUROC on small datasets. '*' denotes implemented results and 'C' is short for 'CIFAR'.

Methods			Close set	t ACC			Open set AUROC					
Wethous	MNIST	SVHN	C10	C+10	C+50	TINY	MNIST	SVHN	C10	C+10	C+50	TINY
SoftMax	99.5	94.7	80.1	-	-	-	97.8	88.6	67.7	81.6	80.5	57.7
CPN (Yang et al.)	99.7	96.7	92.9	94.8*	95.0*	81.4*	99.0	92.6	82.8	88.1	87.9	63.9
PROSER (Zhou, Ye, and Zhan)	-	96.5	92.8	-	-	52.1	94.3	-	89.1	96.0	95.3	69.3
CGDL (Sun et al.)	99.6	94.2	91.2	-	-	-	99.4	93.5	90.3	95.9	95.0	76.2
OpenHybrid (Zhang et al.)	94.7	92.9	86.8	-	-	-	99.5	94.7	95.0	96.2	95.5	79.3
RPL-OSCRI (Chen et al.)	99.5*	95.3*	94.3*	94.6*	94.7*	81.3*	99.3	95.1	86.1	85.6	85.0	70.2
ARPL (Chen et al.)	99.5	94.3	87.9	94.7	92.9	65.9	99.7	96.7	91.0	97.1	95.1	78.2
RPL-WRN (Chen et al.)	99.6*	95.8*	95.1*	95.5*	95.9*	81.7*	99.6	96.8	90.1	97.6	96.8	80.9
PMAL-OSCRI	99.6	96.5	96.3	96.4	96.9	84.4	99.5	96.3	94.6	96.0	94.3	81.8
PMAL-WRN	99.8	97.1	97.5	97.8	98.1	84.7	99.7	97.0	95.1	97.8	96.9	83.1

Performance

• More large-scale benchmarks

Table 2: Comparisons on 3 large-scale datasets. We denote 'ImageNet' as 'IN' for simplicity.

Method	C	lose Set A	CC	Ope	en Set AUI	ROC	Additional Params			
Methou	IN-LT	IN-100	IN-200	IN-LT	IN-100	IN-200	IN-LT	IN-100	IN-200	
Softmax	37.8	81.7	79.7	53.3	79.7	78.4	0	0	0	
CPN	37.1	86.1	82.1	54.5	82.3	79.5	2M	0.2M	0.4M	
RPL	39.0	81.8*	80.7*	55.1	81.2*	80.2*	2M	0.2M	0.4M	
RPL++	39.7	-	-	55.2	-	-	4M	-	-	
PMAL	42.9	86.2	84.1	71.7	94.9	93.9	0	0	0	

✓ More obvious advantages on complicated scenarios

Contact Information

PMAL: Open Set Recognition via Robust Prototype Mining

Contact E-mail: <u>lujing6@hikvision.com</u> Jing Lu

Our Team Homepage: https://davar-lab.github.io/