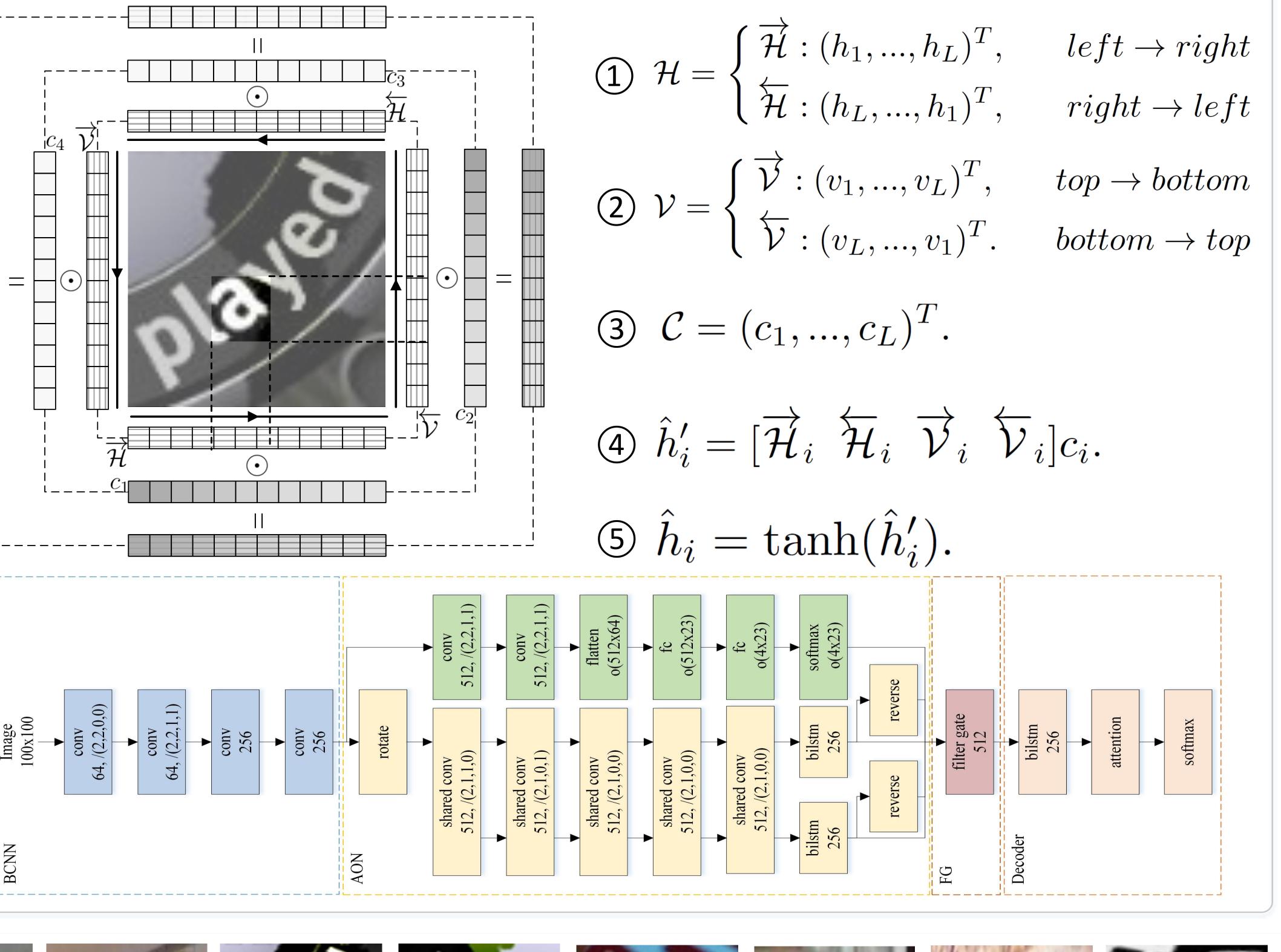


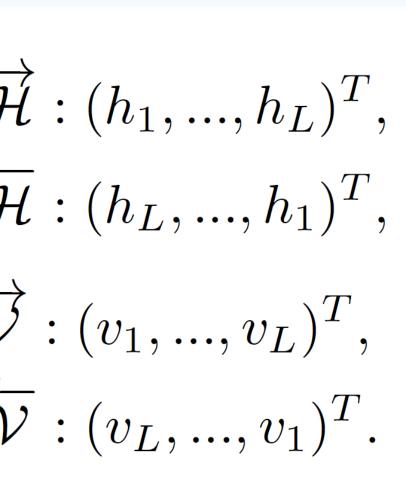
- Existing methods on text recognition mainly work with regular (horizontal and frontal) texts.
- In real-world applications, many scene texts ae in irregular arrangements (e.g. arbitrarily-oriented, curved, slant and perspective etc.)

- We propose the arbitrary orientation network (AON) to extract scene text features in four directions and the character placement clues.
- AON obtains state-of-the-art performance in irregular benchmarks, and is comparable to major existing methods in regular benchmarks.
- The learned character placement clues can be used to generate placement trends of character sequences by positioning each character and drawing text orientations in the original images.

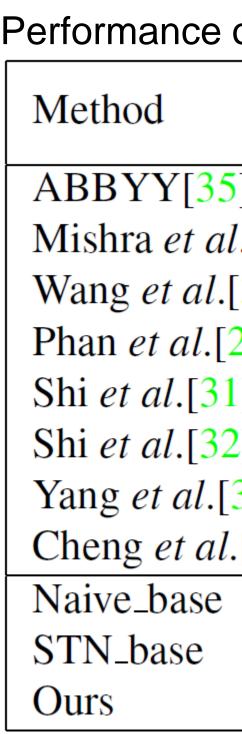


AON: Towards Arbitrarily-Oriented Text Recognition

Zhanzhan Cheng; Yi Niu; Shiliang Pu Hikvision Research Institute


Yangliu Xu Tongji University

Paper Download


Fan Bai; Shuigeng Zhou Fudan University

$$[\overrightarrow{\mathcal{H}}_i \ \overleftarrow{\mathcal{H}}_i \ \overrightarrow{\mathcal{V}}_i \ \overleftarrow{\mathcal{V}}_i]c_i.$$

Zhanzhan Cheng

Performance on Regular Datasets

Method ABBYY[35] Jaderberg et al. Jaderberg et al. Shi *et al.*[31] Shi *et al.*[32] Lee *et al.*[22] Yang *et al.*[39] Cheng's baseline Cheng *et al.*[6] Naive_base STN_base Ours

SALT LAKE CITY • JUNE 18-22

Fan Bai

Performance on Irregular Datasets

en mogalar Balacelo											
	SVT	-Perspe	CT80	IC15							
	50	Full	None	None	None						
5]	40.5	26.1	_	_	_						
l.[11]	45.7	24.7	_	_	_						
.[37]	40.2	32.4	—	—	_						
[28]	75.6	67.0	_	_	_						
1]	92.6	72.6	66.8	54.9	_						
2]	91.2	77.4	71.8	59.2	_						
[39]	93.0	80.2	75.8	69.3	_						
<i>l</i> .[<mark>6</mark>]	92.6	81.6	71.5	63.9	66.2						
,	92.4	83.3	70.5	75.4	67.8						
	94.6	82.8	68.5	73.7	67.5						
	94.0	83.7	73.0	76.8	68.2						

	IIIT5k		SVT		IC03					
	50	1k	None	50	None	50	Full	None		
	24.3	_	_	35.0	_	56.0	55.0	_		
.[17]	97.1	92.7	_	95.4	80.7	98.7	98.6	93.1		
.[16]	95.5	89.6	_	93.2	71.7	97.8	97.0	89.6		
	97.6	94.4	78.2	96.4	80.8	98.7	97.6	89.4		
	96.2	93.8	81.9	95.5	81.9	98.3	96.2	90.1		
	96.8	94.4	78.4	96.3	80.7	97.9	97.0	88.7		
	97.8	96.1	_	95.2	_	_	97.7	_		
ne[6]	98.9	96.8	83.7	95.7	82.2	98.5	96.7	91.5		
	99.3	97.5	87.4	97.1	85.9	99.2	97.3	94.2		
	99.5	98.1	86.0	96.9	81.9	98.5	96.5	90.5		
	99.5	97.8	85.9	96.3	80.7	98.5	96.2	89.2		
	99.6	98.1	87.0	96.0	82.8	98.5	97.1	91.5		

