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Abstract
Few-Shot Class-Incremental Learning (FSCIL) aims to

continually learn novel classes based on only few train-
ing samples, which poses a more challenging task than the
well-studied Class-Incremental Learning (CIL) due to data
scarcity. While knowledge distillation, a prevailing tech-
nique in CIL, can alleviate the catastrophic forgetting of
older classes by regularizing outputs between current and
previous model, it fails to consider the overfitting risk of
novel classes in FSCIL. To adapt the powerful distillation
technique for FSCIL, we propose a novel distillation struc-
ture, by taking the unique challenge of overfitting into ac-
count. Concretely, we draw knowledge from two comple-
mentary teachers. One is the model trained on abundant
data from base classes that carries rich general knowledge,
which can be leveraged for easing the overfitting of cur-
rent novel classes. The other is the updated model from
last incremental session that contains the adapted knowl-
edge of previous novel classes, which is used for alleviat-
ing their forgetting. To combine the guidances, an adaptive
strategy conditioned on the class-wise semantic similari-
ties is introduced. Besides, for better preserving base class
knowledge when accommodating novel concepts, we adopt
a two-branch network with an attention-based aggregation
module to dynamically merge predictions from two com-
plementary branches. Extensive experiments on 3 popular
FSCIL datasets: mini-ImageNet, CIFAR100 and CUB200
validate the effectiveness of our method by surpassing ex-
isting works by a significant margin. Code is available at
https://github.com/LinglanZhao/BiDistFSCIL.

1. Introduction
Real-world applications often face novel data in contin-

uous stream format. In contrast, traditional models can only
make predictions on a pre-defined label set, and are not flex-
ible enough to tackle novel classes which may emerge af-
ter deployment. To address this issue, Class-Incremental
Learning (CIL) has become an active area of recent re-
search [2, 13, 20, 26]. The main focus of CIL is to effec-
tively learn new concepts from abundant labeled samples
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Figure 1. Comparisons of (a) vanilla knowledge distillation in CIL
and (b) our adapted class-aware bilateral distillation for FSCIL.

and to simultaneously alleviate catastrophic forgetting over
old classes. However, the requirement of sufficient training
data from novel classes still makes CIL impractical in many
scenarios, especially when annotated samples are hard to
obtain due to privacy or the unaffordable collecting cost.
For instance, to train an incremental model for face recog-
nition, one or only few images are uploaded for recognizing
the newly occurred person. To this end, Few-Shot Class-
Incremental Learning (FSCIL) is proposed to learn novel
concepts given only a few samples [30]. FSCIL defines a
challenging task where abundant training samples are avail-
able only in the base session for initial model pre-training
and the model should continually absorb novel concepts
from few data points in each incremental session.

A prevailing technique in CIL is to leverage knowledge
distillation for alleviating the forgetting problem. The gen-
eral routine is to calibrate the output logits between current
and previous model, as illustrated in Fig. 1 (a). The out-
put of current model t is restrained to be consistent with the
output of model t-1 in last incremental session. Neverthe-
less, such paradigm is not suitable for FSCIL [30, 41, 42],
since the scarcity of novel class samples will cause model
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t-1 severely overfitting to classes which occurred in that ses-
sion (i.e., session t-1), making the model lack generaliza-
tion ability, which further leads to the biased incremental
learning in current session t.

Therefore, to adapt the powerful distillation technique
for the challenging FSCIL task, we are devoted to design-
ing a new distillation structure that can simultaneously han-
dle the forgetting and overfitting challenges. To this end,
we propose the class-aware bilateral distillation module,
by adaptively drawing knowledge from two complementary
teachers. One of them is the base model trained on abun-
dant data from base classes. By distilling from the base
model, we transfer the rich general knowledge learned from
base classes to the few-shot novel classes, hence easing their
overfitting. The other teacher is the updated model in the
last session t-1, which carries the adapted knowledge of pre-
viously seen novel classes (from session 1 to t-1), we can
prevent the knowledge from forgetting by distilling from
model t-1. Moreover, a class-aware coefficient is learned to
dynamically merge the above two guidance by considering
class-aware semantic similarities between novel and base
classes as priors. Intuitively, the more similar between base
classes and a novel category, the more knowledge from base
classes can be leveraged for alleviating the overfitting. As
presented in Fig. 1 (b), instead of solely utilizing last ses-
sion’s model t-1 for guiding the novel class adaptation, we
selectively merge the output logits from both model t-1 and
the base model as the guidance for distillation.

For further preserving base class knowledge when adapt-
ing to novel classes, an attention-based aggregation module
is proposed to automatically combine predictions from the
base model and the current model t. Considering that the
lower layers of a convolutional neural network capture fun-
damental visual patterns [35], we set these layers shared and
integrate the above models into a unified framework. For
clarity, we also refer to the base and the current model as
the base and novel branch, respectively. The two branches
can be viewed as two individual experts for handling sam-
ples from different categories. For a test sample from base
classes, the aggregation module will pay more attention to
predictions from base branch since it specializes in base
classes without forgetting. In contrast, the focus will be
moved to novel branch when evaluated on novel class test
samples, because novel branch is well adapted to those in-
cremental classes. Our contributions are three-fold:

• To adapt the prevailing distillation technique for ad-
dressing the unique overfitting challenges posed by
FSCIL, we propose a class-aware bilateral distillation
method by adaptively drawing knowledge from two
complementary teachers, which proves to be effective
both in reducing the overfitting risk and preventing the
aggravated catastrophic forgetting.

• We propose a two-branch network where the two

branches are well associated by the class-aware bilat-
eral distillation and attention-based aggregation mod-
ule. The framework can simultaneously accommodate
novel concepts and retain base knowledge, without so-
phisticated meta-training and can be conveniently ap-
plied to arbitrary pre-trained models, making it more
practical in real-world applications.

• The superiority of our approach is validated on three
public FSCIL datasets: mini-ImageNet, CIFAR100,
and CUB200 by achieving remarkable state-of-the-art
performance. For example, we surpass the second best
result on mini-ImageNet over 3%.

2. Related work
2.1. Few-Shot Learning

Few-Shot Learning (FSL) aims to learn novel categories
from scarce training examples. Previous FSL works can
be divided into four categories. Metric learning based
works [29, 31, 32, 37] attempt to learn appropriate distance
metric between query (test) and support (training) samples.
Initialization based FSL methods [9, 27] are proposed to
learn good initialization of the model. Moreover, weight
generation based methods [10, 25] directly generate clas-
sification weights for new classes to alleviate overfitting.
In addition, hallucination based approaches [19, 34] train
a generation network for data augmentation. However, FSL
focuses solely on recognizing few novel classes, while ig-
noring the ability to handle the previously learned ones.

2.2. Class-Incremental Learning
It is a long-standing challenge in machine learning to

learn novel concepts while preserving previous knowledge.
To this end, Class-Incremental Learning (CIL) is proposed
to learn new classes sequentially without forgetting the old
ones. One line of CIL works focus on powerful regulariza-
tion on network weights [16, 38] or predictions [12, 20, 36]
to minimize the change between the current model and the
previous one. Another line of CIL methods reveal that
storing a small number of representative samples from old
classes as an exemplar set for rehearsal [2,13,26] is helpful
when learning novel concepts. Moreover, CIL works such
as [1,22] dynamically expand models to accommodate new
classes. Nevertheless, CIL usually requires abundant novel
class training samples which makes it unsuitable for many
realistic applications such as incremental face recognition.

2.3. Few-Shot Class-Incremental Learning
Few-Shot Class-Incremental Learning (FSCIL) simulta-

neously takes into account the challenges from the above
FSL and CIL. Concretely, FSCIL aims at incrementally
learning from very few novel samples while preserving
already learned knowledge. TOPIC [30] firstly defines
the setting of FSCIL and adopts a neural gas for topol-
ogy preservation in the embedding space. Following up



works [3, 8, 23] modify existing approaches from CIL for
undertaking FSCIL. Besides, [4, 5] utilize word vectors for
alleviating the intrinsic difficulty of data scarcity in FSCIL.
Another line of prevailing methods [6, 28, 39, 41–43] focus
on meta-training on base class data by sampling a num-
ber of fake incremental episodes for test scenario simula-
tion. Nevertheless, this relies on extra meta-training phases
to prepare the model for future tasks, which is impracti-
cal in many real-world scenarios and limits its application
to arbitrary pre-trained models. Moreover, most of these
works [39,41–43] freeze the parameters of the meta-trained
model for explicit base knowledge preservation while sacri-
ficing the plasticity of the model for novel concepts. Unlike
the meta-training strategies, our adapted distillation method
can be conveniently applied to any pre-trained models with-
out sophisticated meta-training and preserve model’s plas-
ticity for adapting to novel knowledge.

3. Problem Setting
The aim of FSCIL [28, 30, 39] is to accommodate new

knowledge from few novel class training samples and re-
sist forgetting previously learned old classes. Formally,
the model is trained on a series of incremental sessions{
D0,D1, · · · ,Dt

}
where Dt = {(xi, yi)}i is the training

set from session t and xi is a sample from class yi ∈ Ct.
The label space of dataset Dt is denoted by Ct, which is
mutually disjoint between different sessions, i.e. ∀i, j and
i ̸= j, Ci ∩ Cj = ∅. Following standard incremental learn-
ing paradigm, a model in each session t can only access Dt

and an optional exemplar setM consisting of a small num-
ber of stored samples from the earlier sessions. Usually, the
training set D0 in the base session contains a sufficient vol-
ume of data for base classes C0. In contrast, the training sets
Dt (t ≥ 1) in the following sessions contains few training
samples, which is also termed as a N -way K-shot support
set, comprising of only K examples for each of the N cat-
egories from Ct. Once the incremental learning in session
t is finalized, the model is tested on query samples from all
the seen classes so far: C̃t = C0 ∪ C1 · · · ∪ Ct.

4. Methodology
4.1. Overall Architecture

Considering the stability and plasticity dilemma in FS-
CIL with severe data imbalance between base and novel
classes, our method adopts a two-branch architecture shown
in Fig. 2 (a). For preventing base class knowledge from
forgetting, the base branch is trained on the base training
set D0 with abundant samples as in standard supervised
learning in the base session. In each incremental session,
feature extractor of base branch is frozen and its classifi-
cation weights are expanded using mean feature embed-
dings [25] of the corresponding novel class training sam-
ples. To compensate for the lack of plasticity in base branch,

novel branch can effectively adapt to new classes with learn-
able parameters. Moreover, for reducing computational
complexity and mitigating overfitting, the feature extractors
of base and novel branches have all the layers shared ex-
cept the last residual layer [11]. Detailed discussions of the
shared and learnable layers are also provided in Section 5.

Particularly, a feature extractor fϕ(x) ∈ Rd outputs d-
dimensional features. Its parameters ϕ can be decomposed
into ϕ = {ψ, θ} where ψ and θ denote the parameters of
shared layers and the last residual layer, respectively. Dif-
ferent from θb of the base branch which is frozen, θtn of the
novel branch, which is initialized with θb in the first incre-
mental session, is learnable in each session. Hereinafter, we
use superscripts (0, 1, ..., t) for representing sessions and
subscripts (b, n) to distinguish two branches. For exam-
ple, we denote feature extractors of base and novel branch
in session t as fϕb

and fϕt
n

, respectively1.
In session t, the novel branch is distilled under the com-

bined guidance from base branch for transferring generaliz-
able knowledge, and that from novel branch in last session
(t − 1) for inheriting previously absorbed knowledge. Fi-
nally, an attention-based aggregation is used to merge com-
plementary predictions from two branches. We first elabo-
rate on the two key components and then discuss the flexi-
bility of our method with none or a few exemplars available.

4.2. Class-Aware Bilateral Distillation
In each session t, for both the base and novel branches

to further handle novel classes, corresponding classification
weights {W t−1

b ,W t−1
n } in session t − 1 are expanded to

{Ŵ t−1
b , Ŵ t−1

n } (shape Rd×|C̃t−1| → Rd×|C̃t|) based on Dt

shown in Fig. 2 (b). Concretely, the imprinted weights [25]
for newly occurred classes in session t are calculated using
centroids of feature embeddings from training samples with
the same class labels:

wc =
1

Nc

∑
(xi,yi)∈Dt

I [yi = c] fϕ (xi) , (1)

where wc is the prototype [29] of class c, I denotes an in-
dicator function and Nc is the sample number of class c
in Dt. fϕ refers to the fixed fϕb

when expanding W t−1
b ,

or fϕt−1
n

when expanding W t−1
n , respectively. Then base

branch classification weights (W t
b ) are replaced by Ŵ t−1

b ,
and novel branch is initialized with {θt−1

n , Ŵ t−1
n } which

can be further finetuned for novel class adapation.
For effectively learning from few-shot novel classes, our

class-aware bilateral distillation combines the generalizable
knowledge preserved in base branch and newly adapted
knowledge from previous novel branch. The guidance sig-
nal for distillation is an adaptive convex combination of
base and previous novel branch logits:

1For clarity, We omit the superscript of base branch feature extractor as
it is fixed in each incremental session.
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Figure 2. (a) An overview of our proposed method where modules with dashed lines are only used in the training process of session t.
More details are discussed in Section 4. (b) Visualization of expanded classification weights in session t. Best viewed in color.

ẑ = ρ(x) · ẑt−1
b + (1− ρ(x)) · ẑt−1

n , (2)

where logits z = W⊤ ∗ fϕ(x) is computed with corre-
sponding weights and feature embeddings using cosine sim-
ilarity2, operators “·” and “∗” are used to distinguish be-
tween element-wise and matrix multiplication. Specifically,
ẑt−1
b ∈ R|C̃t| is computed using imprinted Ŵ t−1

b and fea-
tures from the base branch, while ẑt−1

n ∈ R|C̃t| is computed
with Ŵ t−1

n and features from previous novel branch. The
combination coefficient ρ(x) is defined as:

ρ(x) =

{
1.0 if y(x) ∈ C0

1/(1 + e−gϑ(v(x))) if y(x) /∈ C0,
(3)

which adaptively controls the extent of transferred gen-
eral knowledge from base to novel classes, conditioned on
the class-wise semantic similarities. We set the coefficient
of base classes to 1 for directly preserving base knowl-
edge absorbed from abundant samples. As for a sample
x from novel class c, a multi-layer perceptron (MLP) gϑ
containing only one hidden layer takes the semantic vector
v(x) ∈ R|C0| as input and outputs a scalar:

gϑ(v(x)) = MLP
([
cos(wc,w1), . . . , cos(wc,w|C0|)

]
;ϑ

)
.

(4)
v(x) encodes the prior semantic similarity between the cat-
egory of x to all base classes where the k-th element is de-
noted as cos(wc,wk), which is the cosine similarity be-
tween the classification weights wc of novel class c and
wk of base class k, both directly taken from the expanded
Ŵ t−1

b . As wk can be reasonably regarded as the mean fea-
ture embedding for class k [25], v(x)k naturally reveals the
semantic similarity between class k and c. In addition, our
distillation is a more general form of vanilla distillation by
degenerating ρ(x) to 0 in Eq. 2.

After obtaining the supervisory teacher logits ẑ, the loss
for class-aware bilateral distillation is defined as:

2Following [13], we use L2 normalization by mapping features and
weights into a high-dimensional sphere for alleviating the imbalance of
base and novel classes. Normalization is omitted to simplify notation.

Ldst = E(x,y)∼Dt∪M[

|C̃t|∑
k=1

−τk(ẑ) log τk(ztn)],

τk(z) =
eγ·z(k)/T∑|C̃t|
j=1 e

γ·z(j)/T
, (5)

where z(k) is the k-th element in z, T is the distillation tem-
perature and γ is a scalar to control the peakiness of output
probability distribution [10, 24]. Note that our class-aware
bilateral distillation is applied to Dt ∪ M on all the seen
classes to simultaneously address both catastrophic forget-
ting and the unique overfitting challenge in FSCIL.

To further prevent the novel branch from overfitting and
stabilize training, we also introduce a regularization loss
Lreg to explicitly control coefficients ρ(x) by encouraging
more knowledge transferred from the base branch:

Lreg = E(x,y)∼Dt∪M |ρ(x)− 1| . (6)

After that, combined with the classification loss Lcls:

Lcls = E(x,y)∼Dt∪M
[
CE(γ · ztn, y)

]
, (7)

where CE is the cross-entropy loss function and ztn is the
output logits from current novel branch, we formulate the
final loss function for novel branch as:

Lnovel = Lcls + wdst · Ldst + wreg · Lreg, (8)

where wdst and wreg are the balancing hyper-parameters.

4.3. Attention-based Prediction Aggregation
Despite the remarkable classification performance of

novel branch trained using our class-aware bilateral distil-
lation, it is inevitable to incur base class knowledge forget-
ting due to finetuning on novel class training set. To fur-
ther improve the performance on base classes, an attention-
based aggregation module that selectively merges predic-
tions from both base and novel branches is proposed.

As shown in the right part of Fig. 2 (a), logits ztb and
ztn from base and novel branch are fed into two MLPs, i.e.,
hφb

and hφn
, to get the confidence score αb and αn for each



Algorithm 1 Model Adaptation in Incremental Session t

Input: Feature extractor of base and novel branch fϕb
and

fϕt−1
n

from session t− 1, classification weights of base
and novel branch W t−1

b and W t−1
n .

Output: Evolved feature extractor fϕt
n

, classification
weights W t

n of novel branch, updated exemplar setM.
1: ExpandW t−1

b andW t−1
n from Rd×|C̃t−1| to Rd×|C̃t| us-

ing training samples from Dt with Eq. 1.
2: Initialize current novel branch with {fϕt−1

n
, Ŵ t−1

n } and
randomly initialize MLP parameters gϑ, hφb

and hφn
.

3: while not done do
4: {(x, y)} ← sample a batch of data from Dt ∪M.
5: Calculate the novel branch adaption loss Lnovel in

Eq. 8 with proposed distillation strategy.
6: Calculate the aggregated logits zaggr in Eq. 9 and

compute the overall loss function L in Eq. 11.
7: Update {ϕtn,W t

n, ϑ, φb, φn} with gradients∇L.
8: end while
9: Select Top-k (default k=1) samples for each novel class

in Dt whose embedding fϕt
n
(x) is the nearest to corre-

sponding weights in W t
n, and then add intoM.

branch: αl = hφl
(softmax(γ · ztl)) , l ∈ {b, n}. We soft-

max the logits to probabilities for the ease of MLP training
and γ is the scalar in Eq. 5. Then aggregated logits zaggr

can be computed with the instance-wise confidence:

zaggr = [ztb, z
t
n] ∗ softmax([αb, αn])

⊤
, (9)

Intuitively, the two complementary branches specialize
in the classification of samples from base and novel cate-
gories, respectively. Namely, base branch is no doubt more
competent in handling samples of base classes C0, where
the forgetting of base knowledge does not exist. By con-
trast, novel branch is more equipped to classify incremental
classes due to the flexible adaption to novel data. To pro-
duce appropriate attention weights for different classes, a
binary classification constraint is adopted:

Lbin = E(x,y)∼Dt∪M
[
CE([αb, αn], I[y ∈ C0])

]
, (10)

the loss encourages a larger value of αb if the sample comes
from base classes, and a larger αn for the novel class. Fi-
nally, combined with the novel branch learning loss in Eq. 8,
the overall loss function can be computed as:

L = Lnovel + Lattn + wbin · Lbin, (11)

where Lattn is the classification loss in the same form as
Eq. 7 on the aggregated logits zaggr. During inference, the
final predictions are made using zaggr.

Combined with the proposed bilateral distillation and
attention-based aggregation, our model is end-to-end train-
able in each incremental session t using Eq. 11 and the
pseudo-code is given in Algorithm 1.

4.4. Discussions of Different Exemplar Settings
Following previous works [3,8,18,28], so far we assume

an exemplar set M (1 exemplar per class by default) can
be accessed. Nevertheless, our method is flexible enough to
provide different modes to trade off between memory cost
and accuracy. In the scenario where more exemplars can
be stored [8, 28], we show in experiments that better results
can be further obtained. More importantly, our method can
also tackle the extreme case where exemplars are unavail-
able. To this end, we only need to modify the exemplar
set fromM to M̄, in which instead of saving original ex-
emplar images, we simply use the mean feature embedding
of each class as the substitution to acquire the pseudo exem-
plar set M̄. Besides, we can directly treat the corresponding
classification weight in W t−1

b and W t−1
n as a good approx-

imation for the mean feature embedding of previous cat-
egories [25], thus no extra memory is required for saving
M̄. Namely, the corresponding weight vector taken from
W t−1

b and W t−1
n are used to replace fb and fn in Fig. 2.

5. Experiments
In this section, experimental setups of FSCIL are first

presented. Then we compare with state-of-the-arts on 3
popular benchmarks. After that, detailed ablative experi-
ments are conducted to validate each proposed component.

5.1. Experimental Setups
Datasets and Evaluation. Following mainstream set-

ting [30], our experiments are conducted on three bench-
mark datasets: mini-ImageNet [32], CIFAR100 [17] and
CUB200 [33]. mini-ImageNet is a subset of ImageNet [7]
including 60,000 images with resolution 84 × 84 from 100
chosen classes. CIFAR100 is comprised of 60,000 tiny im-
ages of size 32 × 32 from 100 categories. CUB200 is a
fine-grained classification dataset for 200 bird species with
similar appearance where the image size is 224 × 224. We
follow the splits in [30], for mini-ImageNet and CIFAR100,
60 categories are selected as base classes while the remain-
ing are split into 8 incremental sessions with only 5 train-
ing examples per novel class (i.e., 5-way 5-shot). As for
CUB200 dataset, 100 categories are selected as the base
training set, while the rest forms 10-way 5-shot tasks for
10 sessions in total. We leave more details of dataset splits
and visualizations in the supplementary material.

Implementation Details. Our method is conducted
with PyTorch library, and results are averaged over 5 runs.
ResNet18 [11] is adopted as the feature extractor fϕ which
is trained by SGD optimizer with Nesterov momentum 0.9.

In the base session, we simply pre-train on the base
class training set as in standard supervised learning without
extra self-supervised techniques [15, 23] or sophisticated
meta-training strategies [6, 41]. For mini-ImageNet and CI-
FAR100, we train 200 epochs from scratch and the learning



Method
Accuracy in each session (%)

Avg.
Final

Impro.0 1 2 3 4 5 6 7 8

iCaRL∗♢ [26] 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21 33.29 +35.01
TOPIC [30] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 39.64 +27.80
ERL++∗∗ [8] 61.70 57.58 54.66 51.72 48.66 46.27 44.67 42.81 40.79 49.87 +11.43
IDLVQ∗ [3] 64.77 59.87 55.93 52.62 49.88 47.55 44.83 43.14 41.84 51.16 +10.38
CEC [39] 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63 57.75 +4.59
F2M∗∗ [28] 72.05 67.47 63.16 59.70 56.71 53.77 51.11 49.21 47.84 57.89 +4.38
CLOM [44] 73.08 68.09 64.16 60.41 57.41 54.29 51.54 49.37 48.00 58.48 +4.22
Replay∗ [21] 71.84 67.12 63.21 59.77 57.01 53.95 51.55 49.52 48.21 58.02 +4.01
MetaFSCIL [6] 72.04 67.94 63.77 60.29 57.58 55.16 52.90 50.79 49.19 58.85 +3.03
FACT♮ [41] 75.32 70.34 65.84 62.05 58.68 55.35 52.42 50.42 48.51 59.88 +3.71

Ours (0 exemplar) 74.65 69.89 65.44 61.76 59.49 56.11 53.28 51.74 50.49 60.32
Ours (1 exemplar)[default]∗ 74.65 70.43 66.29 62.77 60.75 57.24 54.79 53.65 52.22 61.42
Ours (5 exemplars)∗∗ 74.65 70.70 66.81 63.63 61.36 58.14 55.59 54.23 53.39 62.06

∗: method with 1 exemplar per class. ∗∗: method with 5 exemplars per class. ♢: results from [30]. ♮: results using the publicly available code from [41].

Table 1. Comparisons to state-of-the-art FSCIL methods on mini-ImageNet. “Final Impro.” highlights the improvement in the final session.

rate is set to 0.1 which is dropped by 0.1 at the 120-th and
160-th epoch. Since the model for CUB200 is initialized by
ImageNet [7] pre-trained parameters [30,39,41], we further
train 120 epochs with learning rate 0.01 dropped by 0.1 at
the 50-th, 70-th and 90-th epoch. Following [10, 24], scalar
γ is initialized to 10 which is learnable in the base session
and keeps fixed afterward. Data augmentations including
left-right flip, random crop and color jitter are applied.

In each incremental session, we further finetune the
novel branch with distillation temperature T = 16 and
learning rate 0.001 for 100 iterations. The learning rate for
MLPs (gϑ, hφb

and hφn ) is set to 0.01. The selection of
other hyper-parameters is provided in Section 5.3.

5.2. Comparisons with State-of-The-Arts
We conduct comparisons with recent state-of-the-arts on

mini-ImageNet, CIFAR100 and CUB200 datasets. By de-
fault, our method utilizes an exemplar set M where only
1 training example per class is stored as in [3, 26]. As re-
ported in Table 1, we surpass the second-best approach by
3.03% for the improvement in the final session and boost
the average performance by 1.54% on mini-ImageNet. With
more exemplars stored (5 per class as [8, 28]), we further
improve the final result by 1.17% thanks to our distillation
module for effectively exploring useful knowledge from the
data. When exemplar is unavailable, our flexible framework
still surpasses all previous methods due to better novel class
adaptation in extreme scenarios discussed in Section 4.4.

The performance curves on CIFAR100 and CUB200 are
presented in Fig. 3, and more detailed results on the two
datasets are given in our supplementary material. As shown
in Fig. 3, our method consistently outperforms previous
state-of-the-arts in all sessions. The above observations ver-
ify the superiority of our approach for effective adaptation
to novel classes with few training samples.
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Figure 3. Performance curves of our method comparing to state-
of-the-art FSCIL methods on (a) CIFAR100 and (b) CUB200.

5.3. Ablation Studies
We first validate our two key components: Class-Aware

Bilateral Distillation (CABD) in Section 4.2 and Attention-
based Prediction Aggregation (AGGR) in Section 4.3, then
provide hyper-parameter sensitivity test experiments.

Distillation Module. The upper part of Table 2 shows
that, with fixed feature extractor and imprinted classifica-
tion weights, the base branch achieves joint accuracy of
48.97% in the final session. However, the accuracy is bi-
ased to base classes while the novel class accuracy Accnovel
only reaches 13.68% due to the lack of plasticity. Instead,
our novel branch (middle part of Table 2) with learnable pa-
rameters is much better adapted to novel classes as Accnovel
implies. However, vanilla distillation only using imprinted
novel branch logits ẑt−1

n (part of Eq. 2) leads to degraded
performance, since base class accuracy Accbase decreases
dramatically caused by overfitting to novel classes. Al-
though directly using logits ẑt−1

b from base branch main-
tains base class results, but fails to facilitate better novel
performance. Only by combining the general knowledge
from ẑt−1

b and the well adapted concepts from ẑt−1
n in Eq. 2,

the best balance between Accbase and Accnovel is obtained,



Branch
CABD AGGR Joint Accuracy of base and novel classes in each session (%) Final session (8)

ẑt−1
n ẑt−1

b zaggr 0 1 2 3 4 5 6 7 8 Accbase Accnovel

Base 74.65 69.85 65.30 61.67 58.65 55.48 52.74 50.79 48.97 72.50 13.68

Novel
✓ 74.65 69.46 64.17 59.75 56.88 52.65 49.44 47.16 45.33 54.33 31.50

✓ 74.65 69.49 65.09 62.09 59.95 56.56 53.73 52.23 50.83 68.08 24.95
✓ ✓ 74.65 69.68 65.91 62.32 60.15 56.78 54.52 53.26 51.47 66.15 29.45

Aggregate ✓ ✓ ✓ 74.65 70.43 66.29 62.77 60.75 57.24 54.79 53.65 52.22 67.83 28.80

Table 2. Ablation studies of our proposed method on mini-ImageNet dataset. “Accbase” and “Accnovel” denote the performance of
recognizing test samples from base and novel classes in the final session (8), respectively.

AGGR Type AGGR Strategy Acc.

Feature (a) W⊤ ∗ [f tb ⊙ f tn] 51.58

Prediction

(b) ztb if (argmax ztb ∈ C0) else ztn 49.39
(c) ztb if (argmax ztn ∈ C0) else ztn 51.81
(d) 1

2 · z
t
b +

1
2 · z

t
n 51.28

(e) [ztb, z
t
n] ∗ softmax([αb, αn])

⊤ 52.22

Table 3. Prediction aggregation choices on mini-ImageNet.

achieving 2.5% improvement than the naive base branch.
Prediction Aggregation Module. Although only using

the novel branch already makes promising results, we hope
to further suppress the drop in base classes as they con-
tribute a large proportion of encountered classes. To this
end, an attention-based prediction aggregation module is
adopted to adaptively combine predictions from base and
novel branches. As shown in the lower part of Table 2,
the proposed aggregation module achieves consistent im-
provements compared to a single novel branch in all ses-
sions with better trade-off between Accbase and Accnovel.
To further prove the advantages of our aggregation design,
we compare it to other widely used aggregation choices: (a)
classifying with concatenated features from base and novel
branches [14,15,40]; (b) adopting predictions from the base
branch if argmax(ztb) belongs to base classes, otherwise
adopting predictions from the novel branch; (c) similar to
(b) but using argmax(ztn) instead of argmax(ztb) for rout-
ing; (d) simply averaging predictions from two branches
without attention mechanism. It is observed from Table 3
that our design (e) outperforms other choices, attributing to
the flexible attention mechanism.

Hyper-Parameter Sensitivity. In Eq. 8 and Eq. 11,
three key hyper-parameters are included during training:
wdst, wreg and wbin. See from Fig. 4 (a), our model can
achieve satisfactory results on mini-ImageNet dataset with
relative larger values of wdst and wbin, and becomes insen-
sitive to the selection of the two hyper-parameters in the
wide range from 50 to 200. It is because the model can
prevent more knowledge from forgetting with the help of a
larger distillation weight wdst, and the aggregation module
can better distinguish a test sample whether from a base or
novel class thanks to the regularization effect of binary clas-

A
cc

.
A

cc
. 

A
cc

. 

                 
    

    

    

             

                 
    

    

    

        

                 
    

    

    

      

(a) (b)

Figure 4. Ablations of hyper-parameter sensitivity: (a) wdst and
wbin on mini-ImageNet and (b) wreg on three datasets.

sification weight wbin. Moreover, consistent experimental
results are also observed from the other two datasets. As
a result, we set wdst = 100 and wbin = 50 respectively
throughout our experiments.

In addition, we analyze the performance fluctuation un-
der different loss weights wreg which controls the regular-
ization strength on ρ(x) in Eq. 2. The larger value of wreg

brings stronger constraints to pull ρ(x) close to 1, meaning
more general knowledge from base branch should be trans-
ferred to novel branch. Shown in Fig. 4 (b), accuracy grad-
ually improves as wreg grows larger in the beginning, be-
cause transferring more base knowledge can alleviate over-
fitting. Then accuracy starts to decline when wreg becomes
too large, as the plasticity of novel branch is hurt. The opti-
mal wreg for three datasets is 1.0, 1.5 and 2.0, respectively.
For classes from the fine-grained dataset CUB200 that share
similar appearance, larger wreg is required to pull the coef-
ficient ρ(x) close to 1, thus more knowledge is transferred
from base to novel classes. Contrarily, for classes from
mini-ImageNet and CIFAR100 that are less semantically re-
lated, a relatively smaller wreg is preferred.

We also present ablations on the sensitivity of model
parameters θ which can be finetuned for novel classes.
Table. 4 shows that, with fewer parameters trainable, the
model finds it difficult to accommodate new concepts due to
sacrificed plasticity. We also tend to get dissatisfactory per-
formance when finetuning excessive parameters due to po-
tential overfitting in few-shot scenarios. Finally, our model
achieves the best trade-off between stability and plasticity
when adapting the last residual layer (i.e., conv5 x in [11]).



Learnable Parameters θ Final Acc.

NULL 49.96
last (conv + bn) of conv5 x [11] 51.53
last resblock of conv5 x 51.78
conv5 x 52.22
conv4∼5 x 51.81
conv3∼5 x 51.69
conv2∼5 x 51.42
all layers of backbone fϕ 51.34

Table 4. Sensitivity of learnable parameters θ on mini-ImageNet.

5.4. Further Analyses
Coefficients for Distillation. We provide more in-

depth analyses of the distillation coefficients ρ(x). From
a dataset-wise view, the prior semantic similarity on dif-
ferent datasets varies, thus the semantic-aware coefficients
ρ(x) should be varied across benchmarks. We first compute
the cosine distances between each novel class weight and its
nearest base class weight, which are averaged to obtain the
overall similarity level of each dataset, then visualize its re-
lation with the average value of learned ρ(x). As in Fig. 5
(a), ρ(x) quantitatively shows a positive correlation with
the average level of semantic similarity, validating the more
general knowledge from base branch should be transferred
when base and novel classes are more semantically related.

From a class-wise view, we present 3 novel classes from
CIFAR100 generating the distillation coefficient ρ(x) from
large to small, as well as its corresponding semantic similar-
ity vector v(x) to base classes which is the input to produce
ρ(x). For clarity, top-3 values from vector v(x) are shown.
Fig. 5 (b) shows that ρ(x) tends to be a larger value when
the novel class is more similar to the base ones since more
generalizable knowledge can be leveraged, which again ac-
cords with our intentions to design the module.

Attention Weights for Aggregation. To better under-
stand the attention-based aggregation, we visualize the av-
erage score of αb and αn in Eq. 9 for each base and novel
class on the test set of mini-ImageNet. From Fig. 6 (a), we
observe that test samples from base classes (indices 1-60)
induce larger base branch score αb to leverage more pre-
dictions from base branch, while test samples from novel
classes (indices 61-100) produce a larger αn to pay more
attention to novel branch predictions, as is expected.

In more detail, αb of base classes with indices 1-35 tend
to obtain larger values than those with indices 36-60. Be-
cause large proportions of classes within 36-60 and novel
classes from 61-100 are inorganic objects, while classes
from 1-35 belong to animal categories that are relatively
less similar to novel classes, hence model puts more con-
fidence on the predictions of base branch. This reveals the
class-wise αb and αn are also correlated with different base-
to-novel semantic similarity. Due to space limitations, we
leave more detailed visualizations in the supplement.
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Figure 5. Further analyses of our distillation coefficients from (a)
a dataset-wise view and (b) a class-wise view on CIFAR100.
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Figure 6. (a) Distribution of the averaged confidence score αb

and αn of each class on mini-ImageNet; (b) Performance trade-
off between base and novel classes on CUB200.

Trade-off between Base and Novel Classes. For bet-
ter understanding FSCIL challenges, we analyze the ability
to adapt to novel classes and to preserve base knowledge
by delving into the individual accuracy of base and novel
classes, as well as the harmonic mean. Since most existing
works only focus on joint accuracy, we can only compare
with few recent works [39, 41] that report harmonic mean
results on CUB200 dataset. Fig. 6 (b) shows that our ap-
proach outperforms the second best result on novel classes
by 9% verifying the power of adaption with our distilla-
tion module. Meanwhile, we still maintain competitive base
class accuracy thanks to the prediction aggregation module
for resisting base class forgetting. Finally, the best harmonic
mean proves that we achieve a better trade-off between base
and novel classes.

6. Conclusion
In the paper, we adapt knowledge distillation technique

to handle the unique challenge of overfitting posed by FS-
CIL and introduce the Class-Aware Bilateral Distillation,
which dynamically combines the general knowledge from
base classes and the adapted concepts from previous novel
classes. Besides, an attention-based aggregation module is
used to bring a better balance between base and novel class
performance. Extensive experiments and in-depth analysis
prove that our approach can set a remarkable new state-of-
the-art. In the future, we will investigate the more long-term
FSCIL scenarios to verify our algorithm’s robustness.
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