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Overviews

In this paper:

* \We proposed an enhanced contrastive learning method, HyperMatch, to
handle the effective separation and exploitation of clean and noisy pseudo
labels.

* We relax the assignment be categorizing the noisy sample into a hyper-
class (a union of top-K nearest classes), followed by the proposed
Relaxed Contrastive Loss to mitigate the confirmation bias.

« HyperMatch achieves superior performance on SSL benchmarks.



Semi-Supervised Learning
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Semi-supervised learning methods attempt to
utilize unlabeled data to construct a classifier
whose performance exceeds the performance of
classifiers obtained using only labeled data.

The cluster from the unlabeled data helps us
considerably in placing the decision boundary.

A basic example of binary classification in the presence of unlabeled data.

van Engelen, J.E., & Hoos, H.H. (2019). A survey on semi-supervised learning. Machine Learning, 109, 373-440.



Confirmation Bias

The model makes over-confident errors and reinforces
those misclassified patterns while ignoring or
underweighting evidence that contradicts them.

This problematic phenomenon is named confirmation
bias, which prevents the model from further improving
Its performance.
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The test accuracy of FixMatch drops after a long period of
training due to confirmation bias.



Contrastive Learning
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to learn the general features of a dataset without labels by
teaching the model which data points are similar or
different.
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Motivation
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a) Class assignment: the instance is pulled close to the wrong pseudo label class
and pushed away from ground-truth class;

b) Hyper-Class assignment: the instance is assigned to hyper-class (the union of
top-K nearest classes) with ground-truth class included,

c) As K grows, noisy labels benefit much more than clean labels;



Method
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a) Relaxed Contrastive Loss

Clean samples — contrastive loss

Noisy samples — relaxed contrastive loss



Method
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Experiments

CIFARI10

CIFAR100

Method STL10
40 250 4000 400 2500 10000 |
MixMatch [ '] 52.46 = 11.5 88.95 £ 0.86 93.58 £0.10 32.39 £1.32 60.06 & 0.37 71.69 £ 0.33 38.02 & 8.29
ReMixMatch [ '] 80.90 £ 9.64 94.56 £ 0.05 95.28 £0.13 55.72 £ 2.06 72.57 £0.31 76.97 £ 0.56 -
SSWPL [ ] - - - - 73.48 £ 0.45 79.12 £ 0.85 -
LaplaceNet [ "] - - 95.35 £ 0.07 - 63.36 £ 0.02 73.40 £0.23 -
FixMatch(RA) [ V] 86.19 & 3.37 94.93 4 0.65 95.74 £+ 0.05 51.15 &£ 1.75 71.71 £0.11 77.40 £0.12 65.38 & 0.42
CoMatch [ /] 93.09 £ 1.39 95.09 £ 0.33 95.44 + 0.20 58.11 4+ 2.34 71.63 +0.35 79.14 = 0.36 79.80 = 0.38
SimMatch [ 1] 94.40 £1.37 95.16 £0.39 96.04 £ 0.01 62.19 £ 2.21 74.93 £0.32 79.42 £0.11 -
CCSSL [ ] 90.83 £ 2.78 94.86 £+ 0.55 95.54 + 0.20 61.19 £ 1.65 75.7 +0.63 80.68 £0.16 80.01 +1.39
HyperMatch 93.92 £1.10 95.01 £0.23 96.05 +0.12 | 63.01 £ 0.57 76.45+0.35 81.09+ 0.28 | 82.98 + 0.37

HyperMatch achieves SOTA performance on several SSL
benchmarks and also steady performance improvement
on a more complex Semi-iNat 2021 dataset with OOD

samples.

(1) CIFAR10 / CIFAR100 / STL10 image classification

Semi-iNat 2021
Method From Scratch | Moco Pretrain

Supervised 19.09 34.96
CoMatch [ ] 20.94 38.94
FixMatch [ "] 21.41 40.3
CCSSL (CoMatch) [ V] 24.12 39.85
CCSSL (FixMatch) [ V] 31.21 41.28
HyperMatch (FixMatch) 33.47 42.57

(2) Semi-iNat 2021



Experiments
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HyperMatch shows fast convergence speed and better pseudo label accuracy compared with other
methods. The mitigated imbalanced distributions of pseudo label class indicates HyperMatch's ability

to alleviate confirmation bias.
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