

Reciprocal Feature Learning via Explicit and Implicit Tasks in Scene Text Recognition

Hui Jiang, Yunlu Xu, Zhanzhan Cheng, Shiliang Pu, Yi Niu, Wenqi Ren, Fei Wu, Wenming Tan Hikvision Research Institute, Hangzhou, China Zhejiang University, Hangzhou, China Content

❀ Background

ℜ Method

❀ Experiment

Background

- ***** Scene Text Recognition Feat Single-Task Learning
 - ➤ CTC-Based
 - Attention-Based

***** Scene Text Recognition Feat Multi-Task learning

- Additional information from another task or detailed supervision
- Exploiting original tasks and supervision

Background

- ***** Drawback of current solution
 - Single Task solution
 - ✤ Limited Performance
 - * Add extra annotations

- Multi-Task solution
 - ✤ Immature Technology Application
 - ✤ Ignore the relation between tasks
 - ✤ Task competition

- **ℜ** Motivation
 - **Excavate implicit information from existing annotations to training a auxiliary task**
 - **Excavate and utilize the relation between tasks to improve the performance**

***** Overall Architecture

- ✤ Backbone
- Character Counting Branch (CNT)
- Text Recognition Branch (RCG)
- Reciprocal Feature Adaptor (RF-Adaptor)

Method

Text length is a facilitated information in text information and correlate to the text recognition task

$$L_{cnt} = \begin{cases} MSE(\hat{y}_{cnt}, y_{cnt}) & \text{if Regression} \\ CrossEntropy(\hat{y}_{cnt}, y_{cnt}) & \text{if Classification} \end{cases} Metric = \begin{cases} RMSE = \sqrt{\frac{1}{N} \sum_{I=1}^{N} (\hat{c}_{i} - c_{i})^{2}} \\ relRMSE = \sqrt{\frac{1}{N} \sum_{I=1}^{N} \frac{(\hat{c}_{i} - c_{i})^{2}}{c_{i} + 1}} \end{cases}$$

ľ

Method

Reciprocal Feature Adaptor

Transfer the bi-directional complementary data from one to the other, assembling features and adapting to task

Feature Fusion

- * RCG contains more information than CNT, replenish information via \bigoplus
- \clubsuit CNT is feature selector like a learnable gate to suppress the noise via \bigcirc
- Feature Strengthen

✤ Apply different self-enhancement module to strengthen the feature

HIKVISION

✤ Performance Summary

Methods	Voor	Training data			Be	enchm	Avg. Acc				
Methous	rear		IIIT	SVT	IC03	IC13	IC15	SVTP	CT	Regular	Irregular
CRNN [27]	2016	MJ	78.2	80.8	89.4	-	-	-	-	-	-
AON [5]	2018	MJ+ST	87.0	82.8	91.5	-	-	73.0	76.8	-	-
NRTR [26]	2018	MJ+ST	90.1	91.5	94.7	-	79.4	86.6	80.9	-	82.3
ASTER [28]	2019	MJ+ST	93.4	89.5	94.5	91.8	-	78.5	79.5	92.3	-
TPS-Bilstm-Attn [1]	2019	MJ+ST	87.9	87.5	<u>94.9</u>	93.6	77.6	79.2	74.0	91.0	76.9
AutoSTR [40]*	2020	MJ+ST	94.7	<u>90.9</u>	93.3	$\underline{94.2}$	<u>81.8</u>	81.7	-	93.2	-
RobustScanner [39]†	2020	MJ+ST	95.3	88.1	-	-	-	79.5	90.3	-	-
Bilstm-Attn $[1]^3$	2019	MJ+ST	93.7	89.0	92.3	93.2	79.3	81.2	80.6	92.1	80.4
Bilstm-Attn w. RF-L	-	MJ+ST	94.1	88.6	$\underline{94.9}$	94.5	82.4	82.0	82.6	93.0(+0.9)	82.4(+2.0)
DAN $[35]^4$	2020	MJ+ST	93.4	87.5	94.2	93.2	75.6	80.9	78.0	92.1	78.2
DAN w. RF-L	-	MJ+ST	94.0	87.7	93.6	93.5	76.7	<u>84.7</u>	77.8	92.2(+0.1)	79.7(+1.5)

Compared with SOTA solution

Samples	EVIL:	Gujara	to Sh	Solaris
w.o RF-L	vll	gujara	l <mark>]</mark> ugh	souris
w. RF-L	evil	gujarat	laugh	solaris
Samples	P. PINANG	alibaba	Change	Before
w.o RF-L	pipinang	alibabal	chance	refore
w. RF-L	ppinang	alibaba	change	before

Experiment

✤ Ablation Summary

CNT Implementation Ablation

Methods	w.o. Clas	s Balance	w. Class Balance				
	Regular ²	Irregular	Regular	Irregular			
CE	89.5	78.5	93.2	83.5			
Regression	93.3	82.3	94.6	84.5			

✤ CNT Implementation compared with ACE

	Aux	iliary	iary RCG Accuracy (%					CNT RMSE				
Methods	CNT	RCG	IIIT	SVT	IC03	IC15	IIIT	SVT	IC03	IC15		
ACE			87.5	81.8	89.9	67.5	0.477	0.963	0.555	0.889		
w. RCG (RF-L)		\checkmark	88.4	83.8	90.2	70.0	0.323	0.890	0.518	0.896		
w. CNT (RF-L)	\checkmark	-	88.4	83.6	90.3	70.1	0.327	0.886	0.514	0.884		

✤ CNT Implementation compared with ACE

Mothoda	AC	$E [42]^5$	ACE	w. RF-L	C	NT	CNT w. RF-L		
Methous	RMSE	relRMSE	RMSE	relRMSE	RMSE	relRMSE	RMSE	relRMSE	
IIIT	0.477	0.169	0.323	0.133	0.300	0.128	0.272	0.115	
SVT	0.963	0.361	0.890	0.326	0.455	0.165	0.455	0.164	
IC03	0.555	0.206	0.509	0.192	0.372	0.147	0.352	0.138	
IC13	0.518	0.193	0.502	0.188	0.275	0.107	0.268	0.106	
IC15	0.889	0.364	0.896	0.361	0.614	0.261	0.604	0.256	
SVTP	1.389	0.499	1.414	0.514	0.724	0.258	0.747	0.256	
CT	1.001	0.443	1.200	0.442	0.854	0.420	0.835	0.368	

✤ Generalization Ablation

Encoder	Decoder	w. CNT (RF-L)	IIIT	SVT	IC03	IC13	IC15	SVTP	\mathbf{CT}	Avg.Gain
VGG	Bilstm-Attn		91.2	85.5	92.6	92.1	77.5	77.7	73.6	
VGG	Bilstm-Attn	\checkmark	91.8	86.9	92.9	92.9	78.0	78.9	74.7	+0.9
ResNet	Bilstm-Attn		93.7	89.0	92.3	93.2	79.3	81.2	80.6	
ResNet	$\operatorname{Bilstm-Attn}$	\checkmark	94.1	88.4	94.5	94.5	81.9	82.0	82.6	+1.2
ResNet	CTC		91.7	85.8	91.5	91.7	74.1	73.2	76.7	
ResNet	CTC	\checkmark	92.1	86.9	92.1	92.4	76.5	75.8	78.9	+1.5
ResNet	Paral-Attn		90.0	82.8	87.6	89.0	72.4	71.0	73.3	
ResNet	Paral-Attn	\checkmark	90.3	85.8	92.2	93.0	73.8	75.8	77.8	+3.8

✤ Ablation Summary

✤ Optimization Ablation

Mathada		Branch		Direction		Benchmark						
Methods	RCG	CNT	C2R	R2C	IIIT	SVT	IC03	IC13	IC15	SVTP	CT	Acc
RCG					90.0	82.8	87.6	89.0	72.4	71.0	73.3	81.3
RCG w. CNT (JT-L)		\checkmark			89.6	83.9	92.6	91.7	72.6	74.0	78.1	82.4(+1.1)
RCG w. Fixed CNT (RF-L)			\checkmark		90.2	86.7	92.2	91.6	73.2	76.0	79.5	82.8(+1.5)
RCG w. CNT (Unidirectional RF-L)			\checkmark		90.7	86.6	92.6	91.2	73.2	76.0	80.2	82.9(+1.7)
RCG w. CNT (Bidirectional RF-L)	\checkmark	\checkmark	\checkmark		90.3	85.8	92.2	93.0	73.8	75.8	77.8	83.3(+2.0)
CNT		\checkmark			92.5	93.0	96.3	95.6	84.2	85.0	85.8	89.4
CNT w. RCG (JT-L)		\checkmark			93.0	94.3	96.2	96.1	84.9	86.4	83.7	89.8(+0.4)
CNT w. Fixed RCG (RF-L)	\checkmark	\checkmark			91.6	92.9	96.5	96.0	86.0	87.3	87.2	89.9(+0.5)
CNT w. RCG (Unidirectional RF-L)					92.6	93.5	96.6	95.2	86.0	86.7	89.6	90.0(+0.6)
CNT w. RCG (Bidirectional RF-L)	\checkmark	\checkmark	\checkmark		93.5	94.0	96.7	95.7	85.5	86.7	88.9	90.3(+0.9)

Thank you