

Introduction

• Problems of SVTS Research

- Face various environmental interferences (e.g., camera shaking, motion blur and immediate illumination changing etc.) and meet the real-time response requirement
- Existing datasets are too small to promote the area study
- The lack of uniform evaluation metrics and benchmarks

Competition Characteristics

- The video text dataset is further extended from LSVTD [1], containing 129 video clips from 21 real-life scenarios.
- ✓ More accurate annotations
- \checkmark A general dataset with large range of scenarios
- ✓ Video clips are overwhelming of low-quality images caused by blurring, perspective distortion, motion inferences etc.
- Three specific tasks are proposed: video text detection, tracking and the end-to-end recognition
- Provides the motivation, dataset description, task definition, evaluation metrics, results of submitted methods and their discussion

Organization

Schedule of the SVTS competition :

- ✓ 5 January 2021: Registration begin. Training & validation datasets are available for downloads.
- \checkmark 1 March 2021: Submissions begin. Test data is released.
- ✓ 31 March 2021: Registration deadline.
- \checkmark 11 April 2021: Submissions deadline of all the tasks.

Maintained on Codalab web:

https://competitions.codalab.org/competitions/27667

Scan Me for Paper (ICDAR-2021)

ICDAR 2021 Competition on Scene Video Text Spotting Zhanzhan Cheng; Jing Lu; Baorui Zou; Shuigeng Zhou; Fei Wu

Zhejiang University, Hikvision Research Institute, Fudan University

Dataset

- Characteristics
- Large scale and diversified scenes: 21 different scenes including 13 indoor and 8 outdoor scenes
- Collected with different kinds of video cameras: mobile phone, HD camera, Car-DVR camera
- Different difficulty levels: Hard, Medium and Easy
- Multilingual instances: alphanumeric and non-alphanumeric
- **Dataset Split**: 71, 18 and 40 videos for training, validation and testing set, respectively.

- Submited json files for Task 1, 2 & 3.
- Task 1 Video Text Detection • Recall_d, Precison_d and F-score_d as the evaluation metrics
- Task 2 Video Text Tracking • ATA_t, MOTA_t and MOTP_t are used as the evaluation metrics [3]
- Task 3 End2End Video Text Spotting
 - Precision_s, F-score_s are used as evaluation metrics [2]

46 valid submissions from 24 teams from both research communities and industries for the three tasks

• Sequence-level evaluation protocols are proposed to evaluate the end-to-end performance, i.e., Recall_s,

Submissions

User ID	Rank	$\operatorname{F-score}_d$	$\operatorname{Precision}_d$	Recall_d	Affiliations		User ID	Rank	ATA_t	$MOTA_t$	$MOTP_t$	Affiliations
tianqihenhao	1	0.8502	0.8561	0.8444	TEG, Tencent		tianqihenhao	1	0.5372	0.7642	0.8286	TEG, Tencent
wfeng	2	0.8159	0.8787	0.7615	IA, CAS		DXM-DI-AI	2	0.4810	0.6021	0.8017	DuXiaoman Financial
DXM-DI-AI	3	0.7665	0.8253	0 7155	DuXiaoman Financial		-CV-TEAM	2	0.4610	0.0021	0.8017	DuAlaoman Financiai
-CV-TEAM	3	0.7005	0.8255	0.7155	DuAlaoman Financiai		panda12	3	0.4636	0.7009	0.8277	IA, CAS
tangyejun	4	0.7582	0.8088	0.7136	*		lzneu	4	0.3812	0.5647	0.8198	*
wangsibo	5	0.7522	0.8377	0.6825	*		wangsibo	5	0.3778	0.5657	0.8200	*
weijiawu	6	0.7298	0.7508	0.7098	Zhejiang University		yucheng3	6	0.3116	0.5605	0.8203	University of Chinese
yeah0110	7	0.7276	0.7314	0.7238	*		yuchengo					Academy of Sciences
BOE_AIoT_CTO	8	0.7181	0.7133	0.7229	BOE		tangyejun	7	0.2998	0.5027	0.8196	*
colorr	9	0.7172	0.7101	0.7245	*		yeah0110	8	0.2915	0.4811	0.8218	*
qqqyd	10	0.7140	0.7045	0.7238	*		sabrina_lx	9	0.2436	0.3757	0.7667	*
yucheng3	11	0.6749	0.8622	0.5544	University of Chinese		seunghyun	10	0.1415	0.2183	0.6949	NAVER corp
					Academy of Sciences		enderloong	11	0.0918	0.1820	0.7520	*
superboy	12	0.6704	0.8336	0.5607	*		tiendy	12	0.0676	0.2155	0.7439	University of
seunghyun	13	0.6219	0.6897	0.5663	NAVER corp		tiendv	12				Information Technology
hanquan	14	0.5881	0.6252	0.5552	*		weijiawu	13	0.0186	0.1530	0.7454	Zhejiang University

Tab 1. Results of Video Text Detection

User ID	Rank	$\operatorname{F-score}_s$	$\operatorname{Precision}_{s}$	Recall_s	ATA_s	$MOTA_s$	$MOTP_s$	Affiliations
tianqihenhao	1	0.5308	0.6655	0.4414	0.4549	0.5913	0.8421	TEG, Tencent
DXM-DI-AI -CV-TEAM	2	0.4755	0.6435	0.3770	0.4188	0.4960	0.8142	DuXiaoman Financial
panda12	3	0.4183	0.5243	0.3479	0.3579	0.5179	0.8427	IA, CAS
lzneu09	4	0.3007	0.3611	0.2576	0.2737	0.4255	0.8330	Northeastern University
yucheng3	5	0.2964	0.3506	0.2567	0.2711	0.4246	0.8332	University of Chinese Academy of Sciences
tangyejun	6	0.2284	0.2527	0.2084	0.2121	0.3676	0.8337	*
tiendv	7	0.0813	0.1402	0.0572	0.0802	0.0887	0.7976	University of Information Technology
enderloong	8	0.0307	0.0239	0.0429	0.0357	0.0159	0.7813	*
colorr	9	0.0158	0.0085	0.1225	0.0146	0.0765	0.8498	*
weijiawu3	10	0.0077	0.0041	0.0550	0.0088	-0.1530	0.7670	Zhejiang University
BOE_AIoT_CTO	11	0.0000	0.0000	0.0000	0.0000	-0.0003	0.0000	BOE

Discussion

- Video text detection task
- irregular text instance
- Video text tracking task

- End2End Video Text Spotting

The overall performance is low, and large improving space is existing for this research topic

References

- ACM MM. pp. 855{863 (2019)
- 1484-1493 (2013)

Tab 2. Results of Video Text Tracking

Tab 3. Results of End2End Video Text Spotting

• Most participants employ the semantic-based Mask R-CNN framework to capture regular and

• TencentOCR team achieves the best score

• Most methods focus on the trajectory estimation

• Tencent-OCR team achieves the best score

• A pre-trained general model is important in many method

(1) Cheng, Z., Lu, J., Niu, Y., Pu, S., Wu, F., Zhou, S.: You Only Recognize Once: Towards Fast Video Text Spotting. In:

2 Cheng, Z., Lu, J., Zou, B., Qiao, L., Xu, Y., Pu, S., Niu, Y., Wu, F., Zhou, S.: FREE: A Fast and Robust End-to-End Video Text Spotter. IEEE Transactions on Image Processing 30, 822{837 (2020)

3 Mas, J., Mota, D.F., Almazan, J.A., De Las Heras, L.P.: ICDAR 2013 robust reading competition. In: ICDAR. pp.