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Abstract—Few-Shot Class-Incremental Learning (FSCIL) fo-
cuses on progressively absorbing new concepts given only limited
training data. For tackling this challenge, several recent FS-
CIL works resort to pre-training models with Self-Supervised
Learning (SSL) to obtain features that can generalize well
to new classes. However, to avoid overfitting and catastrophic
forgetting, previous works only leverage SSL in the base session
and keep all or most parameters fixed in incremental sessions,
resulting in inadequate adaptation to novel classes. Thus, in this
paper, we explore the setting where more parameters can be
updated for adapting to novel concepts, and discover that the
model pre-trained with SSL leads to degraded performance even
compared to that without SSL. It can be attributed to the severer
forgetting of base class knowledge. To address this issue, we
propose an imprinting-based distillation module for effectively
regularizing the adaption process, and a mathematically provable
routing strategy for further improved results. The effectiveness
of our approach is verified on 3 popular FSCIL benchmarks by
significantly outperforming previous methods.

Index Terms—Few-shot learning, incremental learning, self-
supervised learning

I. INTRODUCTION

Class-Incremental Learning (CIL) [4]–[6] requires a model
to learn novel classes with sufficient data and to resist forget-
ting previously learned classes. Nevertheless, the demand for
abundant novel class training samples in CIL still limits its
application when labeled data are prohibitively expensive to
acquire. For example, when updating a face recognition model
to recognize a new identity, only a single photo corresponding
to that person is expected to be uploaded. As a result, Few-
Shot Class-Incremental Learning (FSCIL) has become a hot
topic of current research [3], [7], [8]. In FSCIL, sufficient
training instances are provided only in the base session (t = 0)
to obtain a stable initial base model, which will progressively
incorporate incremental classes given very limited data in
the novel sessions (t ≥ 1). The FSCIL task presents a real
challenge in which the scarcity of novel class training samples

not only causes severe overfitting, but also exacerbates the
notorious catastrophic forgetting.

Several recent FSCIL works [7], [9], [10] resort to Self-
Supervised Learning (SSL) [11]–[13] for generalizable repre-
sentation learning, since SSL explores the intrinsic structure
of images without manual annotations. For further analyzing
SSL in FSCIL, we conduct detailed experiments on a typical
method weight imprinting [1] upon which existing works are
built: a nearest-neighbor classifier is constructed using mean
feature embeddings [14] as prototypes for each class. We
also focus mainly on rotation-based SSL [12] which has been
verified [7], [9], [10] to be the most effective in FSCIL.

As shown in the left part of Fig. 1, SSL improves weight
imprinting on the joint accuracy (first row), which is consistent
with [7], [9], [10]. Notably, the improvement comes mainly
from better generalization to novel class (third row) thanks
to SSL with similar base class results (second row). However,
the performance on novel classes is still limited, since existing
works only exploit SSL in the pre-training stage (base session)
to enhance the generalization ability of features. Concretely,
none [1], [7] or very few parameters [9], [10] can be updated
leading to insufficient adaptation to novel classes.

For better adapting to new classes, we set more parameters
trainable in incremental sessions and use the widely-adopted
knowledge distillation [2], [3] in CIL as a regularization.
The right column of Fig. 1 shows that finetuning on SSL
pre-trained models even incurs degraded joint performance
compared to that without SSL. After analyzing the base and
novel results, we find that once fully adapting to novel classes
in FSCIL, the model trained with SSL is biased to novel
class performance with severe base knowledge forgetting due
to data scarcity. Thus, the improvement on novel classes is
overwhelmed by the dramatic decrease in base class accuracy.

For effectively preserving base knowledge, we take in-
spiration from weight imprinting [1] which shows desirable
base performance, and propose an imprinting-based knowl-
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Fig. 1. Comparisons to typical few-shot class-incremental learning (FSCIL)
methods: weight imprinting [1] (left) and vanilla knowledge distillation (VKD,
right) [2], [3] on CIFAR100. Note that blue curves for our method in the left
and right parts are exactly the same and the appeared differences are simply
caused by varied coordinate axis scales. Joint accuracy, base class accuracy
and novel class accuracy are presented in each row.

edge distillation module. Instead of using the previous model
(t− 1) as a teacher [2], [3] for regularizing the training of the
current model (t), our teacher model is composed of a feature
extractor trained on base classes which is fixed afterward,
and expandable classification weights based on imprinting [1].
As a result, the updated student model will not deviate too
far away from the base model to arrest forgetting, and the
generalizable knowledge learned from abundant base class
data can be transferred for learning few-shot novel categories
without overfitting. To enhance the generalizability of learned
features, an additional self-supervision-based regularization
loss is included. During inference, a mathematically provable
routing strategy that dynamically selects convincing predic-
tions between the student and teacher model is introduced
for further improved results. The blue lines of Fig. 1 show
that our method surpasses imprinting [1] with a better trade-
off between base and novel classes, and outperforms vanilla
distillation [2] by better preserving base knowledge.

The contributions of our paper are three-fold: (1) We first
provide an in-depth analysis of the effect of SSL on FSCIL.
Considering that direct adaptation to novel classes on SSL
pre-trained models causes severe base knowledge forgetting,

an imprinting-based distillation module is proposed. (2) For
further improvements, we introduce a mathematically provable
routing strategy that dynamically routes between predictions
from the student and teacher model; (3) Extensive experiments
on 3 popular FSCIL benchmarks: mini-ImageNet, CIFAR100,
and CUB200 demonstrate the effectiveness of our method by
setting a new state of the art across all the datasets.

II. RELATED WORK

A. Few-Shot Class-Incremental Learning

The task of Few-Shot Class-Incremental Learning (FSCIL)
is recently defined by [3] to train models sequentially on few-
shot novel tasks while not forgetting previously learned knowl-
edge. Concretely, TOPIC [3] proposes to use a neural gas
network for maintaining the topology of features. In addition,
ERL++ [15] utilizes an exemplar relation distillation approach
to regularize structural relations between the current and previ-
ous models. Moreover, semantic-aware distillation [16] resorts
to additional word embeddings. Besides, several current works
apply self-supervision techniques for better performance. For
example, FSLL [9] uses self-supervision as an auxiliary task
for better representation learning. CEC [7] views rotated im-
ages as fake novel classes to train a graph model in the meta-
learning phase. S3C [10] trains a stochastic classifier with
rotated images and averages predictions from these images
for model ensemble. However, prevailing works often keep all
or a majority of model parameters frozen, thereby impeding
the model’s ability to adapt to novel classes. In this work, we
focus on effective model adaptation to few-shot novel classes
while balancing stability and plasticity in FSCIL.

B. Self-Supervised Learning

Self-Supervised Learning (SSL) utilizes predefined auxil-
iary tasks from unlabeled data for better feature learning.
Prevailing SSL techniques include solving jigsaw puzzles [11],
predicting image rotation [12] and multiview contrastive
learning [13]. SSL has achieved improved performance on
downstream tasks like incremental learning [17], few-shot
learning [18], and FSCIL [7], [9], [10]. Following these works,
we focus on rotation-based SSL [12] which has been verified
to be the most effective in few-shot tasks, and provide an in-
depth analysis of SSL on FSCIL which is ignored in existing
works. Finally, two novel modules are proposed to handle the
unique challenges when deploying SSL in FSCIL.

III. METHODOLOGY

A. Preliminary

Problem Definition. Few-Shot Class-Incremental Learning
(FSCIL) [3], [7], [19] task includes a stream of training sets{
S0,S1, · · · ,St

}
. In each training set St = {(xi, yi)}i of

session t, xi is a data point with label yi ∈ Ct, and Ct is the
label space of St which contains no overlap between classes
in different sessions. Usually, a training set St (t ≥ 1) in
incremental session is formulated as a N -way K-shot support
set consisting of N incremental classes and K (e.g., K = 5)
training samples per these classes. The only exception is



clsL

rotL

Imprinted

Rotation 
classifier

Classification 
weights

dstL

Shared

tW

0
t

0

0W
ˆ tW

0

0

t

(a) Pre-training with SSL in Session 0  (c) Our Distillation Module in Session t

Logits

: Model trained in session 0 / t-1 / t : New classes in weights or logits

Base data Novel data

(Abundant) (Few-shot)

: Fixed params

0°
90°
180°
270°

Feature 
extractor

𝜓0
Previous 
classes

New 
classes

dstL

Classification 
weights

tW

1tW −1t −

t

Logits

(b) Vanilla Distillation in Session t

Novel data

(Abundant)

(Teacher)

(Student)

Feature 
extractor=

𝜓 



Rotation
classifier

Weights

Logits

W



/ / : Model imprinted in session t /

=

Fig. 2. Comparisons of existing approaches to our work: (a) rotation-based self-supervised training in session 0; (b) vanilla knowledge distillation in session
t; (c) our imprinting-based knowledge distillation in session t. In the upper part, we use different colors to denote various components in the frameworks. In
the right part, different shapes are used to explain parameterized modules and the output logits. Superscripts are used to highlight parameters and logits of
the model from each session.

the training set S0 which is composed of abundant training
samples from categories C0 for base model initialization. As
in standard CIL, during the incremental learning in session
t, only the training set St and possibly a small exemplar set
M containing few preserved examples from previous sessions
(0, 1, · · · , t − 1) are provided. After training in session t,
the evaluation is conducted on queries from all the ever seen
categories C̃t = C0 ∪ C1 · · · ∪ Ct.

Rotation-based Self-Supervision. Rotation-based trans-
form [12] has been verified to be the most effective SSL
technique in few-shot scenarios [9], [10], [18]. As shown in
Fig. 2 (a), besides classification loss Lcls, a rotation classifier
gφ is trained to predict the rotated angles from input images
which enforces learned features to reduce the bias towards
up-right oriented images (e.g., ImageNet-like) and learn more
diverse features to disentangle classes for better generalization:

Lrot = E[−
∑
r∈R

softmax
(
grφ (fϕ(x

r))
)
], (1)

where R is the rotation augmentation operation which
transforms an input image into four possible 2D rotations
{0◦, 90◦, 180◦, 270◦}1, grφ is the predicted score corresponding
to rotation r, and fϕ is the feature extractor.

Knowledge Distillation. Knowledge distillation [2] has
been widely adopted in standard CIL for preserving learned
knowledge when incorporating novel classes. As shown in
Fig. 2 (b), in addition to classification loss Lcls, knowledge
distillation loss Ldst aligns the output logits between the
current model and previous model on already learned classes:

Ldst = E(x,y)∼M[

|C̃t−1|∑
k=1

−τk(zt−1;T ) log τk(z
t;T )], (2)

where zt and zt−1 denote logits from the current and previous
models, τk(z;T ) = softmax(zk/T ) is the softened probability
of the k-th class, and T is the distillation temperature.

1Using these four angles can get the best empirical results [9], [10], [12],
[18] which can be efficiently implemented by transpose and flip operations.

B. Imprinting-based Distillation Module

As discussed in Section. I, vanilla knowledge distillation [2]
is not suitable for FSCIL, especially on models trained with
SSL. It is because when fully adapting to novel classes, the
model is biased to these new classes with severe forgetting of
knowledge from base classes due to data scarcity. Contrarily,
weight imprinting [1] can preserve base class knowledge at the
sacrifice of model’s plasticity to novel classes. This inspires
us to design an imprinting-based distillation module that better
regularizes the adaption process without severe forgetting.

As shown in Fig. 2 (c), instead of directly using the
model from previous session (t − 1) as guidance in vanilla
distillation, the teacher model in our distillation module is
composed of a fixed feature extractor pre-trained on abundant
base class samples (session 0), and classification weights Ŵ t

expanded by imprinting [1]. For limiting computation cost and
alleviating overfitting, we set the lower layers ψ of fϕ which
capture basic visual patterns [20] shared, while the last residual
layer θ [21] and classification weights W t of the student can
be fully updated for learning novel concepts. Hereinafter, we
use fϕ0 and fϕt to denote the feature extractor of the teacher
and the student model in session t.

Concretely, at the beginning of incremental session t, we
first expand the classification weights of both teacher and
student {Ŵ t−1,W t−1} in the previous session from Rd×|C̃t−1|

to Rd×|C̃t| (d represents the dimension of features) for coarse
novel classes accommodation, obtaining {Ŵ t,W t}. The ex-
panded weight pc for each novel class c from Ct is computed
by mean feature embeddings (prototype) of training examples
from the corresponding class [1], [14]:

pc =

∑
(xi,yi)∈St I [yi = c] fϕ (xi)∑

(xi,yi)∈St I [yi = c]
, (3)

where I is an indicator function and fϕ represents fϕ0 (fϕt−1 )
when expanding Ŵ t−1 (W t−1) for the teacher (student)
model. After that, Ŵ t is also fixed in the current session t,
while W t is learnable for further adaptation to novel classes.

For efficiently adapting to novel classes with limited train-
ing data and resisting the catastrophic forgetting of base



knowledge, we propose to regularize the model training by
transferring the general knowledge learnt in the teacher model.
Formally, the loss function for our imprinting-based knowl-
edge distillation is defined as:

Ldst = E(x,y)∼St∪M[

|C̃t|∑
k=1

−τk(ẑt;T ) log τk(zt;T )], (4)

where zt = (W t)
⊤
fϕt(x) is output logits2 from the student

model, and ẑt = (Ŵ t)
⊤
fϕ0(x) is the guidance from the teacher

to force the student not deviate too far away from the stable
point of base classes. Compared to Eq. 2, our distillation is not
only applied to M for resisting forgetting of |C̃t−1| previous
classes, but also imposed on St to regularize overfitting of
newly occurred classes (i.e., distilling on |C̃t| classes).

Moreover, since the teacher model is pre-trained with
rotation-based SSL, an additional self-supervision-based reg-
ularization loss is introduced to further enhance the general-
izability of learned features for the student:

L′
dst = E(x,y)∼St∪M[

|R|∑
k=1

−τk(v0;T ′) log τk(v
t;T ′)], (5)

where vt = gφt (fϕt(x)) is the rotation prediction from the
student model, v0 = gφ0

(
fϕ0(x)

)
is that from the teacher, and

|R| = 4 denotes the four possible 2D rotations.
Finally, combined with the cross-entropy classification loss

Lcls on zt and the rotation prediction loss Lrot (Eq. 1) on vt,
the total loss for student model training is derived as:

L = Lcls + Lrot + wdst · Ldst + w′
dst · L′

dst, (6)

where wdst and w′
dst represent two balancing weights.

C. Mathematically Provable Routing Strategy

Although solely utilizing the student model with our
imprinting-based distillation for prediction can obtain promis-
ing results, the base class performance is inevitably sacrificed
more or less due to adaptation to novel classes. For better
retaining base class knowledge, we design a mathematically
provable routing strategy that can be efficiently applied during
inference.

Given a test sample x which is predicted into base classes
by the student model: y′ = argmaxk z

t
k ∈ C0, the probability

to correctly classify it into the ground-truth label y is:

P(y′=y) = P(y∈C0)P(y′=y|y∈C0) + P(y/∈C0)P(y′=y|y/∈C0) (7)

= P(y∈C0)P(y′=y|y∈C0) (8)

≤ P(y∈C0)P(ŷ′=y|y∈C0) (9)

= P(y∈C0)P(ŷ′=y|y∈C0) + P(y/∈C0)P(ŷ′=y|y/∈C0) (10)

= P(ŷ′=y) = P(
argmax

1≤k≤|C0| ẑ
t
k
=y

), (11)

where ŷ′ is the teacher’s prediction only on base classes.
Eq. 9 holds because, given a test sample from base classes, the

2To alleviate the imbalance of base and novel classes, L2 normalized feature
embeddings and weights [6] are used. To streamline notations, normalization
is omitted in the equations.

teacher model can make better predictions as it is only trained
on base classes and kept fixed afterward without forgetting.
Eq. 8 (Eq. 10) holds since the underlined term equals zero:
y′(ŷ′) ̸= y when y′(ŷ′) ∈ C0 and y /∈ C0. Based on the above
proof, the final prediction ỹ can be formulated:

ỹ =

{
argmax1≤k≤|C0| ẑ

t
k if y′ ∈ C0

argmax(|C0|+1)≤k≤|C̃t| z
t
k if y′ /∈ C0.

(12)

Namely, for inputs whose pseudo labels y′ from the student
model belong to base classes, predictions from the teacher are
used. Otherwise, we directly adopt the student’s predictions.

IV. EXPERIMENTS

A. Experiment Setup

Dataset Statistics. We evaluate on 3 FSCIL datasets defined
by [3]: (1) regular dataset mini-ImageNet [22]: consisting of
60,000 84× 84 images for 100 categories; (2) low-resolution
dataset CIFAR100 [23]: containing 100 classes with 600
32 × 32 small images per class. (3) fine-grained dataset
CUB200 [24]: comprising of 11,788 samples of size 224×224
from 200 bird categories. 60 classes in mini-ImageNet and
CIFAR100 are considered as base categories and the others are
divided into 8 incremental steps where 5 labeled samples (5-
way 5-shot) are provided for each novel category. Moreover,
100 base classes in CUB200 are chosen and the others are
divided into 10 10-way 5-shot incremental tasks.

Implementation Details. We use ResNet18 [21] as the fea-
ture extractor and optimizer SGD with a Nesterov momentum
0.9 for training. The results are obtained by averaging 10
different runs. In session t = 0, the model is trained on base
class training data with rotation-based SSL (Fig. 2 (a)) as [9],
[10], [12]. The training consists of 200 epochs from scratch
with initial learning rate 0.1 which is reduced by a factor of
0.1 at the 120/160-th epoch for mini-ImageNet and CIFAR100.
Considering that the model for CUB200 is pre-trained on
ImageNet [3], [7], [8], the model is trained for 120 epochs
with an initial learning rate of 0.01 reduced by a factor of 0.1
at the 50/70/90-th epoch. We use color jitter, left-right flip, and
random resized crop for data augmentation. In sessions t ≥ 1,
the student model is updated for 100 iterations with learning
rate 0.001, temperature hyper-parameters T = 16, T ′ = 8 and
balancing weights wdst = 100, w′

dst = 1.

B. Comparisons to Existing Methods

We compare our approach to recent state-of-the-art methods
on 3 public FSCIL benchmarks. Following previous works [4],
[19], so far we assume an exemplar set M can be accessed
with one single exemplar reserved for each class by default.
It is observed in Table I that our method outperforms the
second-best result on mini-ImageNet dataset by 1.76% for
the average accuracy and 3.64% for the final improvement.
Our method is also flexible to undertake cases where none or
more exemplars are available. Given 5 reserved exemplars per
class [15], [19], the final accuracy can be improved by 1.01%.
In a more challenging case where no exemplar is provided
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Fig. 3. Comparisons with other state-of-the-art methods on (a) CIFAR100
and (b) CUB200 datasets.

(i.e., setting M = ∅ in Eq. 4-6), we still acquire the final
result of 52.15% which outperforms other state-of-the-arts.
Moreover, Fig. 3 shows that our approach can also surpass
existing approaches on the other two datasets.

C. Further Analysis

Ablation Studies. As shown in row (1)-(2) of Table II,
weight imprinting [1] in row (1) is improved by 1.1% after
applying rotation-based SSL (Rot). The improvement comes
mainly from better generalization to novel class with 2.5%
increased accuracy. However, novel category performance is
still very limited since none of the parameters can be up-
dated for new concepts. After adapting to novel classes with
more parameters trainable using vanilla knowledge distillation
(VKD in Eq. 2, row (3)), we observe the boosting in novel
accuracy but the dramatic (about 19%) base class forgetting,
which still results in degraded joint accuracy.

To alleviate forgetting, our imprinting-based knowledge
distillation (IKD in Eq. 4) can better preserve base knowl-
edge, obtaining over 2.6% improvement compared to weight
imprinting. Moreover, with our self-supervision-based regular-
ization loss (RKD in Eq. 5), the result is further improved by
about 0.6%.

Finally, row (6) of Table II validates the effectiveness of
our mathematically provable routing strategy by about 1.4%
increase of base class performance and achieves the best over-
all result. Furthermore, we also compare our routing strategy
to other ensemble strategies including directly averaging the
two predictions (Pred-Avg) and concatenating features from
both models for classification (Feat-Concat). Table III shows
that our strategy surpasses all the other approaches thanks to
the mathematical proof of the routing strategy.

Selection of Learnable Parameters θ. As shown in the left
part of Fig. 4 (a), given only few layers learnable for adapting
to novel classes, it is challenging for the model to learn novel
classes since the plasticity is hindered. Also, the right part
shows that, when updating excessive layers, undesirable results
are observed caused by overfitting in FSCIL. Finally, the
model obtains the optimal result by finetuning conv5 x in [21]
(the last residual layer), validating our choice in Section III.

Balancing Base and Novel Class Performance. For further
analyzing new class adaptation and base class preservation

     

     

     

     

     
     

     
     

  

  

  

  

  

  

               

            

(b)(a)

55

54

53

52

51

50

A
cc

u
ra

cy
 (

%
)

                     
 

  

  

  

  

A
cc

u
ra

cy
 (

%
)

71.5 71.1
73.9 75.1

28.8

33.9

40.5

46.0

41.1

45.9

52.3
57.1

Cosine

CEC

FACT

Ours

Base 
Class

Novel 
Class

Harmonic 
Mean

N
one

L
ast C

onv+B
N

L
ast R

esB
lock

C
onv5_x

C
onv4~5_x

C
onv2~5_x

C
onv3~5_x

A
ll L

ayers

Fig. 4. Analyses of (a) selection of θ on mini-ImageNet dataset; (b) balancing
between base and novel class performance on CUB200 dataset.

in FSCIL, our approach is evaluated on the separate base
and novel class performance along with the harmonic mean.
In Fig. 4 (b), our method can simultaneously obtain the
highest Accbase, Accnovel and harmonic mean compared to
other recent state-of-the-art methods. The above observation
is consistent with the motivation of our paper by effectively
absorbing novel knowledge and resisting the severe forgetting
of base classes on SSL pre-trained model in FSCIL.

Results without SSL. Although the main focus of this work
is to have a comprehensive study of self-supervised learning
(SSL) in FSCIL, our proposed distillation module and the
provable routing strategy are not limited to SSL scenarios. To
this end, we simply pre-train our model without SSL (w/o
Lrot in Eq. 1) and omit L′

dst in Eq. 5 when adapting to
novel classes due to the absence of the rotation classifier. We
can observe from Table IV that our approach still surpasses
existing methods verifying the robustness of the algorithm.

V. CONCLUSION

In this paper, we reveal that although direct adaptation to
novel classes on models pre-trained with self-supervision can
obtain improved novel class performance, it causes severe base
knowledge forgetting in FSCIL. To solve the above issue,
an imprinting-based distillation module and a mathematically
provable routing strategy are proposed. Extensive experimental
evaluations and detailed ablations validate the effectiveness
of our method by significantly outperforming previous ap-
proaches across all the datasets.
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Method Acc. in each session (%) Avg. Final
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ERL++∗ [15] 61.70 57.58 54.66 51.72 48.66 46.27 44.67 42.81 40.79 49.87 +13.34
IDLVQ∗ [25] 64.77 59.87 55.93 52.62 49.88 47.55 44.83 43.14 41.84 51.16 +12.29
CEC [7] 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63 57.75 +6.50
F2M∗ [19] 72.05 67.47 63.16 59.70 56.71 53.77 51.11 49.21 47.84 57.89 +6.29
CLOM [26] 73.08 68.09 64.16 60.41 57.41 54.29 51.54 49.37 48.00 58.48 +6.13
Replay∗ [27] 71.84 67.12 63.21 59.77 57.01 53.95 51.55 49.52 48.21 58.02 +5.92
MetaFSCIL [28] 72.04 67.94 63.77 60.29 57.58 55.16 52.90 50.79 49.19 58.85 +4.94
FACT [8] 72.56 69.63 66.38 62.77 60.60 57.33 54.34 52.16 50.49 60.70 +3.64

Ours (0 exemplar) 74.78 69.80 66.37 62.89 59.98 57.46 54.60 52.84 52.15 61.21
Ours (1 exemplar)[default]∗ 74.78 70.66 66.73 64.13 61.84 58.84 55.86 55.20 54.13 62.46
Ours (5 exemplars)∗ 74.78 70.83 67.14 64.69 62.59 60.02 57.17 56.19 55.14 63.17

∗: method with exemplars. ♢: results from [3].

TABLE I
RESULTS OF 5-WAY 5-SHOT FSCIL ON mini-IMAGENET. METRIC “FINAL IMPRO.” IS THE IMPROVEMENT OF ACCURACY IN THE FINAL SESSION.

Components Acc. in each session (%) Final session Acc.

Rot VKD IKD RKD Route 0 1 2 3 4 5 6 7 8 Accbase Accnovel

(1) 74.65 69.85 65.30 61.67 58.65 55.48 52.74 50.79 48.97 72.50 13.68
(2) ✓ 74.78 69.95 65.76 62.40 59.31 56.32 53.60 51.49 50.06 72.67 16.15
(3) ✓ ✓ 74.78 68.32 63.90 60.13 57.69 54.11 50.19 47.73 46.72 53.60 36.40
(4) ✓ ✓ 74.78 68.37 64.87 62.23 60.35 57.29 54.57 53.48 52.70 66.88 31.43
(5) ✓ ✓ ✓ 74.78 68.74 65.50 63.05 60.70 57.85 54.92 54.32 53.30 66.35 33.73
(6) ✓ ✓ ✓ ✓ 74.78 70.66 66.73 64.13 61.84 58.84 55.86 55.20 54.13 67.73 33.73

TABLE II
ABLATIONS OF OUR OVERALL FRAMEWORK ON mini-IMAGENET. METRICS “ACCbase” AND “ACCnovel” ON THE RIGHTMOST PART GIVE THE

ACCURACY OF CLASSIFYING BASE AND NOVEL CLASS TEST SAMPLES IN THE FINAL SESSION.

Strategy Single Pred-Avg Feat-Concat Routing (ours)

Final Acc. 53.30% 53.05% 53.53% 54.13%

TABLE III
ANALYSES OF ENSEMBLE STRATEGIES ON mini-IMAGENET.

Method CEC [7] FACT [8] Ours w/o SSL Ours w/ SSL

Final Acc. 47.63% 50.49% 51.78% 54.13%

TABLE IV
EFFECTS OF SSL ON OUR METHOD ON mini-IMAGENET.
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