

Finding Cycles in Graph: A Unified Approach for Various NER Tasks

Liang Qiao¹, Pengfei Li², Ting Jin³, and Xi Li¹

Zhejiang University, China Xi' an Jiaotong University, China Hainan University, China

CONTENT

1. Problem

Classical NER (Named Entity Recognition) Paradigms

Unified NER Paradigms

- S1: Barack Obama <Person> US <Location>
- S2: The Lincoln Memorial <Location> Lincoln <Person>
- S2: muscle pain < Disorder > muscle fatigue <Disorder>

generative paradigms (Yan et al., 2021)

word-word relation paradigms (Li et al., 2022)

Problems in Word-Word Relation Paradigms

P1: The paradigm cannot theoretically support all kind of entities.

Q: What if "ABC" and "AC" belong to different types?

All of the edges should be classified in multiple types

Q: What if there is an entity of "CBA" (An extreme example) ?

All of the edges could be considered equally

Problems in Word-Word Relation Paradigms

P2: The learning process is error-prone

Q: What if one of the edge being misclassified?

Entities should be considered as a whole.

2. Method

Treat Entities as Cycles

Core motivation: Enhance the complete cycles formation.

Framework of CycleNER

Graph Feature Enhancement Module

Optimized with Cycle Loss

BCE loss:

$$L_{bce} = -\frac{1}{NCL^2} \sum_{i=1}^{N} \sum_{c=1}^{C} \sum_{m=1}^{L} \sum_{n=1}^{L} y_{icmn} \log \hat{y}_{icmn},$$

Cycle loss:

 $s_{1} = diagonal(A_{G}).$ $\mathcal{T}_{k} = (\mathcal{T}_{k-1} - M(diagonal(\mathcal{T}_{k-1})))\mathcal{T}_{1},$ $\mathcal{T}_{1} = (\mathcal{A}_{G} - M(diagonal(\mathcal{A}_{G}))),$ $s_{k} = diagonal(\mathcal{T}_{k}).$ $L_{cycle} = \sum_{k=1}^{K} \sum_{i=1}^{L} (\hat{s}_{k,i} - s_{k,i})^{2},$

Fig. 3: An example of s_k that represents the vector that contains the number of cycles (exclude nested cycles) with the length k.

3. Experiment

Flat NER datasets results:

Types	Methods	Pretrained-models	CoNLL2003			OntoNotes		
1 ypcs	Wethous	r retrained-models	Р	R	F1	Р	R	F1
Sequence-labeling	(Peters et al., 2018) [35]	[ELMO]	-	-	92.22	-	-	-
Sequence-labeling	(Devlin et al., 2019) [15]	[BERT-Large]	-	-	92.80	-	-	-
Span-based	(Yu et al., 2020) [7]†	[BERT-Large]	92.85	92.15	92.50	89.92	89.74	89.83
Span-based	(Li et al.,2020) [8]]†	[BERT-Large]	92.47	93.27	92.87	91.34	88.39	89.84
Hypergraph-based	(Wang and Lu, 2018) [10]	[Glove]	-	-	90.50	-	-	-
Unified	(Yan et al., 2021) [3]	[BART-Large]	92.61	93.87	93.24	89.99	90.77	90.38
Unified	(Li et al.,2022) [14]	[BERT-Large]	92.71	93.44	93.07	90.03	90.97	90.50
Unified	CycleNER(ours)	[BERT-Large]	93.50	91.91	92.70	91.69	88.68	90.16

TABLE I: Results for flat NER datasets. Results with "†" are reported from [3].

Overlapped NER datasets results:

Types	Methods	Pretrained-models	ACE2004		ACE2005			GENIA			
			Р	R	F1	Р	R	F1	Р	R	F1
Sequence-labeling	(Straková et al., 2019) [36]	[BERT-Large]	-	-	84.33	-	-	83.42	-	-	78.20
Sequence-labeling	(Shibuya and Hovy, 2020) [20]	[BERT-Large]	-	-	-	83.30	84.69	83.99	77.46	76.65	77.05
Span-based	(Yu et al., 2020) [7]†	[BERT-Large]	85.42	85.92	85.67	84.50	84.72	84.61	79.43	78.32	78.87
Span-based	(Li et al., 2020) [8]†	[BERT-Large]	85.83	85.77	85.80	85.01	84.13	84.57	81.25	76.36	78.72
Span-based	(Shen et al., 2021) [25]*	[Glove&BERT-Large]	87.20	87.26	87.23	86.24	86.54	86.39	78.47	79.19	78.83
Span-based	(Tan et al., 2021) [37]*	[Glove&BERT-Large]	87.86	85.63	86.73	86.88	86.15	86.51	80.73	77.20	78.93
Span-based	(Li et al., 2021a) [4]*	[BERT-Large]	86.58	86.10	86.34	83.11	85.39	84.23	78.88	77.31	78.09
Hypergraph-based	(Wang and Lu, 2018) [10]	[Glove]	78.00	72.40	75.10	76.80	72.30	74.50	77.00	73.30	75.10
Unified	(Yan et al., 2021) [3]	[BART-Large]	87.27	86.41	86.84	83.16	86.38	84.74	78.87	79.60	79.23
Unified	(Li et al., 2022) [14]*	[BERT-Large]	87.90	87.08	87.49	84.78	88.04	86.38	80.55	77.32	78.90
Unified	CycleNER(ours)	[BERT-Large]	88.45	87.99	88.22	87.48	86.47	86.97	79.23	77.48	78.35

TABLE II: Results for overlapped NER datasets. Results with "†" are reported from [3], and "*" means our re-implemented result with the BERT-Large pretrained model.

Models	ACE2004	ACE2005	GENIA
(Yan et al., 2021) [3]	70.64/-/-	79.69/-/55.0	80.34/-/52.7
(Dai et al., 2020) [13]	69.0/65.4/37.9	77.7/62.9/52.5	79.6/63.1/49.2
(Li et al., 2022) [14]*	87.49/87.34/82.41	86.38/87.05/77.62	78.90/75.45/38.52
CycleNER (ours)	88.22/88.53/83.25	86.97/87.79/78.51	78.35/75.50/38.83

TABLE III: Performance on Overlapped Entities, '/' separates the overall results, the result of sentences including overlapped entity, and the result only considers overlapped entities.'*' means our re-implemented result with the BERT-Large pretrained model.

Discontinuous NER datasets results:

Types	Methods	Pretrained-models	CADEC		ShARe 13			ShARe14			
Types			Р	R	F1	Р	R	F1	Р	R	F1
Sequence-labeling	(Tang et al., 2018) [16]	[Glove]	67.80	64.99	66.36	-	-	-	-	-	-
Span-based	(Wang et al., 2021) [9]*	[BERT-Large]	70.50	72.50	71.50	83.25	76.46	79.71	78.20	83.65	80.83
Span-based	(Li et al., 2021a) [4]*	[BERT-Large]	70.10	69.05	69.57	82.50	76.79	79.54	79.23	81.10	80.15
Hypergraph-based	(Wang and Lu, 2019) [11]	[Word-Embedding]	72.10	48.40	58.00	83.80	60.40	70.30	79.10	70.70	74.70
Others	(Dai et al., 2020) [13]	[ELMO]	68.90	69.00	69.00	80.50	75.00	77.70	78.10	81.20	79.60
Others	(Fei et al., 2021) [47]*	[BERT-Large]	73.11	70.25	71.65	83.68	76.23	79.78	78.23	82.62	80.37
Unified	(Yan et al., 2021) [3]	[BART-Large]	70.08	71.21	70.64	82.09	77.42	79.69	77.20	83.75	80.34
Unified	(Li et al., 2022) [14]*	[BERT-Large]	72.02	70.28	71.14	82.63	76.75	79.58	79.96	80.14	80.05
Unified	CycleNER(ours)	[BERT-Large]	73.49	71.49	72.48	84.96	76.35	80.43	80.30	82.13	81.20

TABLE IV: Results for discontinuous NER datasets. '*' means our re-implemented with the BERT-Large pretrained model.

Models	CADEC	ShARe13	ShARe14
(Yan et al., 2021) [3]	70.64/-/-	79.69/-/55.0	80.34/-/52.7
(Dai et al., 2020) [13]	69.0/65.4/37.9	77.7/62.9/52.5	79.6/63.1/49.2
(Li et al., 2022) [14]*	71.1/67.8/45.1	79.6/65.8/56.7	80.1/65.5/49.9
CycleNER (ours)	72.4/71.3/48.8	80.4/66.6/57.5	81.2/69.3/53.9

TABLE V: Performance on Discontinuous Entities, '/' separates the overall results, the result of sentences with at least one discontinuous entity, and the result only considers discontinuous entities.'*' means our re-implemented result with the BERT-Large pretrained model.

Ablation Studies & Statistic Analysis:

	CADEC	ShARe13	ShARe14
CycleNER (ours)	72.48	80.43	81.20
-BRE	14.49(↓57.99)	19.08(↓61.35)	10.39 (↓70.63)
-TRE	71.41(↓1.07)	79.90(↓0.53)	80.78(\0.24)
-Edge-level Enhancement	71.85(↓0.63)	79.84(↓0.59)	80.64(\u0.38)
-Cycle Loss	70.90(\1.58)	79.72(↓0.71)	80.50(\place 0.50)

TABLE VI: Ablation results on discontinuous NER datasets,

'-' denotes remove the component alone.

Fig. 5: Impact of entity length on ACE2005 and ShARe13

4. Contact

Email to: qiaoliang@zju.edu.cn

THANKS !

