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Abstract—Named Entity Recognition (NER) is the task of
recognizing the entities’ locations and types in text, which can
be generally categorized into flat NER, overlapped NER, and
discontinuous NER. Most previous methods are usually designed
specifically for one of the tasks, such as sequence labeling
approaches for flat NER and span-based models for overlapped
NER. Recently, some new work has begun to propose the
unified NER framework that can addresses all three scenarios
simultaneously. However, there still has room for improvement in
some complex scenarios (long/discontinuous entity). In this paper,
we propose a concise framework that supports all types of NER
tasks, where entities can be represented by unique cycles that
are formed by the directed edges among tokens in the graph.
The model integrates a Graph Feature Enhancement module
to extract correlations at both the node-level and edge-level.
At the node-level, the features are enhanced in the binary and
ternary token relations. In edge-level, the model will go further
to enhance the relations among token pairs using deformable
convolutions. Furthermore, to benefit the completeness of cycle
formation, we also propose a novel Cycle Loss that optimizes
the independent edge classification in the group of cycles from a
global perspective. Experimental results show that our model can
achieve competitive and even new state-of-the-art performance on
eight popular NER benchmarks, including flat NER, overlapped
NER, and discontinuous NER.

I. INTRODUCTION

Named Entity Recognition (NER) intends to identify entities
with predefined semantic types (e.g., person, locations, orga-
nization, etc.) from the text, which is a fundamental task in
natural language processing (NLP), and plays an essential role
in many downstream tasks, including information retrieval [1],
question answering [2], etc. Generally, NER tasks can be
divided into three categories [3], [4] based on whether con-
taining overlapped or nonadjacent entities, named flat NER,
overlapped NER1, and discontinuous NER. The overlapped
NER contains some entities that share the same tokens, and
the discontinuous NER contains entities composed of several
fragments.

Most of the previous methods are designed for one specific
type of NER task. They can be roughly divided into three
types: sequence-labeling, span-based, and hypergraph-based
methods. Sequence labeling [5], [6] is the most commonly
used method in flat NER, where each token is assigned a
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1‘Nested NER’ can be treated as a special case of ‘overlapped NER’.

Bob  has  heart  irregular  rate  and  rhythm 

Entities: Bob heart irregular rate heart irregular rhythm

Person Disease Disease

Cycles Searching

Text:

Fig. 1: Illustration of the proposed schema that represents
entities in cycles. In this example, ‘Bob’ is a flat entity. ‘heart
irregular rate’ and ‘heart irregular rhythm’ belong to both
overlapped and discontinuous types.

label that represents its entity type. These methods are usually
challenging to apply to overlapped and discontinuous entities
directly. Spans prediction [7], [8] is one of the dominating
methods used in handling the problem of overlapped entities.
[4], [9] extend the span-based methods into the two-staged
framework that predicts the entities’ spans and their relations
to fit discontinuous NER. The hypergraph-based methods
[10], [11] are more flexible to overlapped and discontinuous
NER, but they usually depend on the manually defined graph
structure and suffer from the structure ambiguity problem [12].

Although the methods designed for discontinuous NER [4],
[9], [13] can theoretically support all forms of tasks, they
rarely test the model on the flat NER benchmarks. Recently,
some works have been proposed to solve the problem in a
unified framework, achieving the competitive performance on
all three types of NER benchmarks. [3] proposes a generative
sequence-to-sequence framework to predict the entity span
sequences. However, the generative schema cannot parallel
decode and is hard to train if the data is insufficient. [14]
reformulates the NER sub-tasks as the problem of word-word
relation classification, which is flexible for all kinds of entities.
Nevertheless, the optimization target of the relations for every
two words is independent, also easily falling into the spurious
structure problem.

Inspired by [14], we adopt a similar training target to predict
the relations between every two words. Differently, in this
paper, we approach this problem in a new light, that is, to
formulate the NER problem as a task to find all cycles in a



directed graph, as illustrated in Figure 1. Each token in the
text can be regarded as a node in a graph. Tokens that belong
to the same entity will be assigned with directed edges to
their next tokens, and the last token will be linked to the first
one. The token will point to itself in entities with a single
token. Entities belonging to different types will be optimized
in different channels. In this way, entities could be represented
by unique cycles, and the NER task can be transferred into a
single target of predicting the edges in different categories in
a graph.

Aware that the spurious structure may become the main
challenge in graph edge learning, where a single missed edge
will cause an entity’s false recall. In this paper, we propose
the framework named CycleNER to benefit the complete
formation of cycles in the graph. The CycleNER integrates the
strategies in the implicit feature enhancement and the explicit
cycle-level optimization constraint. Specifically, we adopt a
Graph Feature Enhancement (GFE) module after the BERT-
based encoder [15] to construct the correlation information
among tokens. From the perspective of the graph, it enhances
the correlation features in both the one-dimensional node
level and two-dimensional edge level. Moreover, we propose
a Cycle Loss to constrain the prediction to form the same
number of cycles with the ground truth, making the model
more inclined to form edges in terms of complete cycles and
suppressing the prediction of spurious edges. The proposed
framework is one-staged that effectively eliminates the error
accumulation problem.

The major contributions of this paper are as follows: (1)
We propose a concise and uniform task schema to predict
cycles in the graph that can handle any NER subtasks. (2)
We design a Graph Feature Enhancement Module to capture
the correlation features in the graph, including node-level
and edge-level. (3) We propose a Cycle Loss to benefit the
formation of the complete cycles from the global perspective.
(4) Extensive experiments show that our method achieves
competitive and even state-of-the-art results on different types
of NER benchmarks.

II. RELATED WORK

A. Named Entity Recognition

Named Entity Recognition (NER) has been studied for
decades. Among them, sequence labeling, span-based, and
hypergraph-based methods are three mainstream types.

1) Sequence labeling methods.: These models consider the
NER task as a token-wised classification problem [5], [6],
[16]. These methods assign each token a tag with the position
marker such as BIO or BIEOS. CRF methods [17], [18]
are usually used in decoding to better capture the tokens’
correlations. Some sequence labeling methods [16], [19], [20]
can also be customized to fit overlapped and discontinuous
NER tasks by designing more complex label schemes like
BIOHD.

2) Span-based methods.: Span-based methods [7], [8],
[21]–[25] are the most common approach to handling the sit-
uation with overlapped entities by classifying the enumerated

spans. To fit the discontinuous NER situation, they usually
adopt another spans relations prediction module [4], [9]. This
type of method usually requires enumerating all possible
spans, resulting in the large model complexity.

3) Hypergraph-based methods.: [26] first proposes to cope
with the overlapped NER problem by modeling arbitrary com-
binations of mentions in a hypergraph. After that, [12] extends
the framework for overlapped and discontinuous entities, and
[10], [11] utilize deep neural networks to enhance the model.
However, these models usually rely on the manually designed
graph and easily fall into the spurious structure problem.

Most methods are designed for the specific NER scenario.
Some approaches also aim to solve NER problems in a unified
framework. [3] proposes a unified generative framework that
reformulates the NER subtasks as an entity span sequence gen-
eration task. However, it requires higher computing resources
and also cannot parallel decode. [14] reformulates the NER
subtasks as word-word relation classification, which has a
similar optimization target to our proposed method. However,
it optimizes the word-word relation independently, while our
proposed method can benefit the formation of the complete
cycles from a global perspective.

B. Edge Prediction in Graph

Modeling tasks as the edge prediction in a graph is com-
monly used to solve the correlation extraction problem. [27]
treats the relationship between token pairs as edges for the
relation extraction task and reformulates relation extraction as
edge prediction in a graph. In the dependency parsing domain,
[28] proposes a biaffine attention module to extend the graph-
based method [29] and obtain the state-of-the-art performance.
For the NER task, [7], [8], [14] predict the entity head and
tail’s link in the graph composed of tokens. Our method
follows a similar task formulation and essentially enhances
the model by considering the characteristics of the graph.

III. METHODOLOGY

A. Overview

This paper presents to transfer all NER tasks into a unified
learning schema that finds all cycles in a graph. The model
finally predicts the binary relations among tokens in a text
sequence, denoted as edges. We assign each token with a
directed edge to its next token for every entity, and the last
token is pointed to the entity’s head. The entity with a single
token will be pointed to itself.

To predict the edges from the view of cycles, we propose
the unified NER framework named CycleNER as illustrated in
Figure 2. First, the input token sequence is fed into the BERT-
based [15] encoder to obtain the embedded representations.
Then, each token is treated as a node in the graph. A Graph
Feature Enhancement (GFE) module is integrated to extract
the feature further and build the correlation information among
tokens. The GFE module enhances the correlations in both the
node-level and the edge-level. Last, the network conducts the
Binary Graph Prediction to obtain the final token relations
in different categories. The model will predict the number
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Fig. 2: Illustration of the proposed CycleNER framework. The input token sequence is first fed into the BERT-based encoder,
then enhanced by a Graph Feature Enhancement (GFE) module, and finally predicted as a binary graph to represent tokens’
relations. The right part shows the detailed GFE module, which includes node-level and edge-level correlation enhancements.

of channels’ graphs for different entity types. Then we can
conduct the cycle searching to obtain the final entities.

B. Graph Feature Enhancement(GFE) Module

The task of edge prediction is an independent task for each
edge, easily falling into the spurious structure problem [12].
The missing of just one edge will result in a cycle not forming.

To benefit the completeness of the cycles, we need to
enhance the correlation information for the elements belonging
to the same entity. From the perspective of the graph, we have
to make the network fully capture the correlations among the
nodes and edges. Here, we propose a Graph Feature Enhance-
ment(GFE) module to enhance both levels’ correlations.

Specifically, we denote the hidden state of the BERT en-
coder’s output as H={h1, h2, ..., hL}∈RL×d, where L is the
maximum sequence length, and d denotes the dimension. The
GFE module then enhances the feature map in two phases,
node-level and edge-level correlation enhancement. Finally, it
outputs the feature with the shape of RC×L×L, where C is
the number of entity categories.

The whole module can divided into two parts: node level
enhancement and edge level enhancement.

1) Node-level Correlation Enhancement.: In the node-level
correlation enhancement process, we define two operations:
the Binary Relation Extraction (BRE) and Ternary Relation
Extraction (TRE).

The BRE aims to model the basic correlation information
between every two nodes, including the information aggre-
gation by point-wise feature concatenation and the feature
distance represented by the fused rotary embedding [30].
Specifically, the sequence feature is firstly fed into two in-
dependent Multi-Layer-Perceptrons (MLP):

FQ,FK = MLPQ,K(H), (1)

where FQ,FK∈RL×C′×d and C ′ is the channel’s number of
the middle layers. We use FA

ij ,FD
ij ∈RC′×1×1 and separately

denote the channel-wise vector of the aggregation and distance
feature (FA,FD∈RC′×L×L) for every two nodes 0≤i, j≤L,
which can be formed as:

FA
ij = (FQ

i ⊕FK
j )WA, (2)

FD
ij = ((FQ

i Ri)⊗ (FK
j Rj))W

D, (3)

where ⊕ is the concatenation operation, ⊗ is the element-
wise inner product operation, WA∈R2d×1 and WD∈Rd×1

are learnable parameters, and Ri, Rj∈Rd×d are the rotary
matrixes [30]. The BRE’s output can be calculated by point-
wised addition of the two features:

FBRE = FA + FD. (4)

Inspired by significant accuracy gains using high-order
modelling [31], we further conduct the TRE that adopts
triaffine operation to get the relations for every three nodes
0≤i, j, k≤L:

FX ,FY ,FZ = MLPX,Y,Z(H), (5)

Tijk = FX
i

TFY
j

T
W T FZ

k , (6)

where W T ∈Rd×d×d is a three-way tensor, and Tijk is
the channel-wise feature vector of the triaffine feature
T ∈RC′×L×L×L. We reduce the feature’s dimension into
RC′×L×L by conducting the Global Max Pooling operation:

FTRE = GlobalMaxPooling(T ). (7)

Finally, the enhanced node-level features can be represented
as the addition of these two features:

F = FBRE + FTRE . (8)



2) Edge-level Correlation Enhancement.: After the node-
level correlation enhancement module, we can get the rich
characteristics of the edges for every two nodes in the graph.
For an entity represented by a cycle, the edges should also
not be considered independently. For example, if the network
perceives edges from token A to B and B to C, there will be
a higher probability of producing the relation between C and
A. Therefore we introduce a Deformable Attention module
to further capture the correlations among edges, which is
illustrated in the right part of Figure 2.

Specifically, we firstly use a 1×1 convolution to get the
initial edge feature:

Fedge = conv1×1(F) (9)

Observing that the related positions for entities vary in shapes
and sizes, we conduct two 3×3 deformable convolution layers
[32] to further enhance the feature:

Fdcn = dconv3×3(dconv3×3(Fedge)) (10)

Motivated by the channel-wise attention technique in
SENet [33], we want our network can dynamically learn the
importance of different edges, i.e., improving the useful edge
features. Here, we integrate a point-wise attention module on
the feature map as follows:

Fatt = Fdcn ⊗ (sigmoid(conv3×3(Fedge))), (11)

where conv3×3 denotes the 3×3 convolution operation, which
will generate a feature map with shape of RL×L to serve as
attention map.

Finally, the output of the edge-level correlation enhancement
process as well as the GFE module Fout∈RC×L×L can be
calculated as follows,

Fout = conv1×1(conv1×1(Fatt) + F). (12)

C. Binary Graph Prediction and Decoding

In the Binary Graph Prediction, the model predicts the
output score map by simply conducting sigmoid operation:

Y = sigmoid(Fout). (13)

The final binary map can be obtained using the binarization
threshold of 0.5.

In the decoding stage, we adopt [34] to find all cycles
in graphs with the time complexity of O((n + e)(c + 1)),
where n, e, c are the number of nodes, edges, cycles in the
graph, respectively. Every cycle will be transferred into the
final entity in different categories. For each cycle, we take
the smallest position index as the entity head and follow the
edges’ directions to form the final entity.

Specially, if the prior information exists that all entities are
continuous, we may also simplify the cycle searching process
by finding the right-to-left edges. This would fall into a similar
schema with span-based methods. Nevertheless, the model still
provides strong correlation information in entities.
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Fig. 3: An example of sk that represents the vector that
contains the number of cycles (exclude nested cycles) with
the length k.

D. Optimization with Cycle Loss

The CycleNER aims to learn a binary classification task for
every two tokens, whose ground truth can be easily generated
according to the entities and their categories.

The binary-cross-entropy (BCE) loss is usually adopted in
graph edges classification, which can be formed as:

Lbce = − 1

NCL2

N∑
i=1

C∑
c=1

L∑
m=1

L∑
n=1

yicmn log ŷicmn, (14)

where N denotes the number of samples, y and ŷ represent the
binary vectors of ground truth and the model’s output logits,
respectively.

1) Cycle Loss.: The BCE function calculates the loss for
each edge independently, which usually causes the mismatch
problem with the real optimization targets. Different edges’
false positives or negatives will impact the final results in
different degrees. For example, if the model falsely predicts
another edge from ‘rhythm’ to ‘irregular’ in the example
illustrated in Figure 1, it will generate another decoded entity
of ‘irregular rhythm’. However, if the error edge is from
‘rhythm’ to ‘rate’, it will generate the same loss as the previous
example but cannot form any other cycles. In fact, edges in the
graph have different degrees of importance. Some edges are
used multiple times in forming entities, while others might be
unimportant. Therefore, we propose a Cycle Loss to optimize
the network from the granularity of the complete cycles.

The basic idea of Cycle Loss is to match the predicted cycles
number with the ground truth in all positions. Specifically,
given a graph G composed of cycles, we denote its adjacency
matrix as AG. We use sk∈RL to represent the vector that
contains the number of cycles with the length k at each node
position, as an example shown in Figure 3. It is easy to
know that s1 is exactly the vector formed by AG’s diagonal
elements, which is formed as s1=diagonal(AG).

To compute the value of any index i in s2, we need to count
all paths that transferred out from node i to another node j and
then transferred back to i in one step. Similarly, to calculate sk
for any k, we can define the transition matrix Tk. The element
of row i and column j in Tk represents the number of existing
paths with length k from node i to j, without passing through



i. It can be counted by all paths from i to another node m
in k − 1 steps if there is a 1-step edge from m to j, for any
m̸=i, j. The process can be represented by the multiplication
of the (k − 1)-step transition states with a 1-step transition
matrix as follows,

Tk = (Tk−1 −M(diagonal(Tk−1)))T1, (15)

T1 = (AG −M(diagonal(AG))), (16)

where M(s) returns a 2-D matrix that uses s as diagonal
elements and fills others as 0. For the transition matrix in
each step, it removes the diagonal elements to prevent from
counting nested cycles. Then, we can obtain the sk (k>1) as:

sk = diagonal(Tk). (17)

Finally, we can define the Cycle Loss to make model be
optimized to match with the ground truth’s cycle numbers in
each position as follows,

Lcycle =

K∑
k=1

L∑
i=1

(ŝk,i − sk,i)
2, (18)

where the K is a parameter to control the considered max-
imum cycle length and ŝ is the ground truth vector. Notice
that the long entities need to be formed by more edges. The
cycle loss assigns them higher training weights since the global
constraint is imposed on each cycle node. In this way, the cycle
loss can effectively balance the learning weights of entities
with different lengths.

The overall loss of CycleNER can be formed as:

L = Lbce + λLcycle. (19)

where λ is the parameter to balance loss weight.

IV. EXPERIMENT

A. Datasets & Implementation Details

To evaluate our model for various NER subtasks, we con-
ducted experiments on eight datasets included flat, overlapped
and discontinuous NER datasets:

1) Flat NER datasets.: We adopt CoNLL-2003 [38] and
OntoNotes [39] as the flat NER benchmarks. For CoNLL-
2003, we follow [3], [7] to train the models on the concatena-
tion of the training and development sets. For OntoNotes, we
use the same data split as [3], [7], and the New Testaments
portion was excluded since there is no entity in this portion.

2) Overlapped NER datasets.: We use ACE2004 [40],
ACE2005 [41], and GENIA [42] to conduct our experiments.
For ACE2004 and ACE2005, we follow [3], [7] to split the
data as 8:1:1 for training, development, and testing, respec-
tively. For GENIA, we follow [3] to use five types of entities,
and the data split ratio is 8.1:0.9:1.0.

3) Discontinuous NER datasets.: We adopt CADEC [43],
ShARe13 [44] and ShARe14 [45] to evaluate the model on
discontinuous entities. We follow [3], [13] to only use Adverse
Drug Events(ADEs) entities.

We set the maximum input sequence length for the GENIA
dataset as 256 and the other as 160. In the training stage,
all models are trained by the AdamW [46] optimizer with
batch size=8. We set the initial learning rate as 5e−5 for the
encoder and other parts as 1e−3. We use the slanted triangular
learning rate warm-up for the first 10 epochs of total 30
epochs. The parameter of channel’s number of the middle layer
C ′ is set as 64, maximum cycle length K is set as 10 and the
loss weight λ=1. Besides, we adopt the vanilla BERT-Large
[15] as the encoder and the corresponding WordPiece tokenizer
to convert each word into word pieces. All experiments are
conducted on two 32GB Tesla-V100 GPUs.

B. Results

We adopt the span-level F1 score as the evaluation metric
on all datasets, and the results are as follows.

1) Results on Flat NER.: First, we conduct the experiments
on two popular flat NER datasets, whose results are shown in
Table I. Although our model does not achieve the best perfor-
mances, the results are still competitive, and the precisions of
our model obtain the highest value. All edges on the cycles
need to be recalled in the decoding stage of our model. It
benefits the complete entities precision, but it will also affect
the recall to some extent.

2) Results on overlapped NER.: The experiments on three
overlapped NER benchmarks are compared with some recent
advances including sequence-labeling, span-based and unified
methods. Since some methods adopt another domain-specific
pre-trained model, we report the re-implemented results for
fair comparison using the same pre-trained model. As the
results illustrated in Table II, our model achieves the best
Precision and F1 score on the ACE2004 and ACE2005 com-
pared with other methods. It outperforms the previous best
F1 scores by 0.56% and 0.58%, respectively. Our model does
not achieve the state-of-the-art performance on the GENIA
dataset. It is mainly because entities in GENIA have a longer
average word-pieces length (41) compared with ACE2004 (33)
and ACE2005 (29). If there are more nodes and edges in the
graph, the positive edges that need to be predicted are more
sparse, and thus the network cannot be optimized sufficiently
unless more weighting balanced strategies are adopted.

Since the above datasets also include flat entities, we further
investigate the performances of our model on recognizing only
overlapped entities. We additionally evaluate the performance
on the test set that is composed of sentences including
overlapped entities, and the performance that only considers
overlapped entities. As the results are shown in Table III,
our method achieves much better performance in handling
overlapped entities on all datasets.

3) Results on discontinuous NER.: Table IV shows the
comparison results between our model and others on three



Types Methods Pretrained-models CoNLL2003 OntoNotes
P R F1 P R F1

Sequence-labeling (Peters et al., 2018) [35] [ELMO] - - 92.22 - - -
Sequence-labeling (Devlin et al., 2019) [15] [BERT-Large] - - 92.80 - - -
Span-based (Yu et al., 2020) [7]† [BERT-Large] 92.85 92.15 92.50 89.92 89.74 89.83
Span-based (Li et al.,2020) [8]]† [BERT-Large] 92.47 93.27 92.87 91.34 88.39 89.84
Hypergraph-based (Wang and Lu, 2018) [10] [Glove] - - 90.50 - - -
Unified (Yan et al., 2021) [3] [BART-Large] 92.61 93.87 93.24 89.99 90.77 90.38
Unified (Li et al.,2022) [14] [BERT-Large] 92.71 93.44 93.07 90.03 90.97 90.50
Unified CycleNER(ours) [BERT-Large] 93.50 91.91 92.70 91.69 88.68 90.16

TABLE I: Results for flat NER datasets. Results with “†” are reported from [3].

Types Methods Pretrained-models ACE2004 ACE2005 GENIA
P R F1 P R F1 P R F1

Sequence-labeling (Straková et al., 2019) [36] [BERT-Large] - - 84.33 - - 83.42 - - 78.20
Sequence-labeling (Shibuya and Hovy, 2020) [20] [BERT-Large] - - - 83.30 84.69 83.99 77.46 76.65 77.05
Span-based (Yu et al., 2020) [7]† [BERT-Large] 85.42 85.92 85.67 84.50 84.72 84.61 79.43 78.32 78.87
Span-based (Li et al., 2020) [8]† [BERT-Large] 85.83 85.77 85.80 85.01 84.13 84.57 81.25 76.36 78.72
Span-based (Shen et al., 2021) [25]∗ [Glove&BERT-Large] 87.20 87.26 87.23 86.24 86.54 86.39 78.47 79.19 78.83
Span-based (Tan et al., 2021) [37]∗ [Glove&BERT-Large] 87.86 85.63 86.73 86.88 86.15 86.51 80.73 77.20 78.93
Span-based (Li et al., 2021a) [4]∗ [BERT-Large] 86.58 86.10 86.34 83.11 85.39 84.23 78.88 77.31 78.09
Hypergraph-based (Wang and Lu, 2018) [10] [Glove] 78.00 72.40 75.10 76.80 72.30 74.50 77.00 73.30 75.10
Unified (Yan et al., 2021) [3] [BART-Large] 87.27 86.41 86.84 83.16 86.38 84.74 78.87 79.60 79.23
Unified (Li et al., 2022) [14]∗ [BERT-Large] 87.90 87.08 87.49 84.78 88.04 86.38 80.55 77.32 78.90
Unified CycleNER(ours) [BERT-Large] 88.45 87.99 88.22 87.48 86.47 86.97 79.23 77.48 78.35

TABLE II: Results for overlapped NER datasets. Results with “†” are reported from [3], and “∗” means our re-implemented
result with the BERT-Large pretrained model.

Models ACE2004 ACE2005 GENIA
(Yan et al., 2021) [3] 70.64/-/- 79.69/-/55.0 80.34/-/52.7
(Dai et al., 2020) [13] 69.0/65.4/37.9 77.7/62.9/52.5 79.6/63.1/49.2
(Li et al., 2022) [14]∗ 87.49/87.34/82.41 86.38/87.05/77.62 78.90/75.45/38.52
CycleNER (ours) 88.22/88.53/83.25 86.97/87.79/78.51 78.35/75.50/38.83

TABLE III: Performance on Overlapped Entities, ‘/’ separates
the overall results, the result of sentences including overlapped
entity, and the result only considers overlapped entities.‘∗’
means our re-implemented result with the BERT-Large pre-
trained model.

discontinuous NER datasets. We can see that our Cy-
cleNER achieves the new state-of-the-art performances on
all three dataset. Our method surpasses the best results by
4.74%/1.16%/0.34% in Precision and 1.27%/0.74%/0.86% in
terms of the F1 score on three datasets, respectively. The
method of [3] obtains the highest Recall. However, it depends
on a different pre-trained model adapted for generative frame-
work, which is not comparable to a certain degree.

Since only about 10% of entities are discontinuous on the
three datasets, we also evaluate the effectiveness of our method
on recognizing complicated discontinuous entities. Following
the same evaluation setting as [3], [13], we additionally
evaluate the performance on the test set that is composed
of sentences with as least one discontinuous entity, and the
performance that only considers discontinuous entities. As the
results are shown in Table V, our method achieves much better
performance in handling discontinuous entities.

In summary, our model can achieve competitive and even
new state-of-the-art performance on various NER datasets
especially overlapped and discontinuous NER datasets. For
the flat NER, the task is relatively easy, and almost all previ-
ous methods’ performances are similar. The data distribution

has determined the performance upper limits to some extent
unless introduces outside knowledge or heavier structure.
Our model’s performance in those simple NER scenarios is
competitive, while the complex situation can more reflect the
model’s performance advantages.

C. Ablation Studies & Analysis

1) Components Ablation.: We conducted the components
ablation experiments by removing the individual components
separately and re-evaluating the performance on three discon-
tinuous NER datasets. The result is shown in Table VI. In
the GFE module, since the node-level correlation enhance-
ment serves the role of transferring the sequence in a two-
dimensional matrix, we do the ablation on the BRE/TRE
separately. The model without BRE will have a severe per-
formance drop from the result. It is because BRE provides
the basic information required by the edge classification.
The TRE captures high-order correlation information that can
improve the whole model’s performance, but it has difficulty
in convergence when used solely. Besides, the edge-level
correlation enhancement also contributes to the performance
since consistent performance drops exist after excluding it.
The same result also occurs by removing the Cycle Loss, and
the F1 score will decrease by 1.58%/0.71%/0.50% on three
datasets, respectively.

Moreover, we find that the proposed components contribute
a higher performance gain in CADEC than the other two
datasets. This is because entities in CADEC have a larger
average length (2.74) than the others (ShARe13 with 1.72 and
ShARe14 with 1.63). It can somehow reflect that the proposed
modules can effectively extract the integrated correlations
among long entities.



Types Methods Pretrained-models CADEC ShARe 13 ShARe14
P R F1 P R F1 P R F1

Sequence-labeling (Tang et al., 2018) [16] [Glove] 67.80 64.99 66.36 - - - - - -
Span-based (Wang et al., 2021) [9]∗ [BERT-Large] 70.50 72.50 71.50 83.25 76.46 79.71 78.20 83.65 80.83
Span-based (Li et al., 2021a) [4]∗ [BERT-Large] 70.10 69.05 69.57 82.50 76.79 79.54 79.23 81.10 80.15
Hypergraph-based (Wang and Lu, 2019) [11] [Word-Embedding] 72.10 48.40 58.00 83.80 60.40 70.30 79.10 70.70 74.70
Others (Dai et al., 2020) [13] [ELMO] 68.90 69.00 69.00 80.50 75.00 77.70 78.10 81.20 79.60
Others (Fei et al., 2021) [47]∗ [BERT-Large] 73.11 70.25 71.65 83.68 76.23 79.78 78.23 82.62 80.37
Unified (Yan et al., 2021) [3] [BART-Large] 70.08 71.21 70.64 82.09 77.42 79.69 77.20 83.75 80.34
Unified (Li et al., 2022) [14]∗ [BERT-Large] 72.02 70.28 71.14 82.63 76.75 79.58 79.96 80.14 80.05
Unified CycleNER(ours) [BERT-Large] 73.49 71.49 72.48 84.96 76.35 80.43 80.30 82.13 81.20

TABLE IV: Results for discontinuous NER datasets. ‘∗’ means our re-implemented with the BERT-Large pretrained model.

Models CADEC ShARe13 ShARe14
(Yan et al., 2021) [3] 70.64/-/- 79.69/-/55.0 80.34/-/52.7
(Dai et al., 2020) [13] 69.0/65.4/37.9 77.7/62.9/52.5 79.6/63.1/49.2
(Li et al., 2022) [14]∗ 71.1/67.8/45.1 79.6/65.8/56.7 80.1/65.5/49.9
CycleNER (ours) 72.4/71.3/48.8 80.4/66.6/57.5 81.2/69.3/53.9

TABLE V: Performance on Discontinuous Entities, ‘/’ sep-
arates the overall results, the result of sentences with at
least one discontinuous entity, and the result only considers
discontinuous entities.‘∗’ means our re-implemented result
with the BERT-Large pretrained model.

CADEC ShARe13 ShARe14
CycleNER (ours) 72.48 80.43 81.20
-BRE 14.49(↓57.99) 19.08(↓61.35) 10.39 (↓70.63)
-TRE 71.41(↓1.07) 79.90(↓0.53) 80.78(↓0.24)
-Edge-level Enhancement 71.85(↓0.63) 79.84(↓0.59) 80.64(↓0.38)
-Cycle Loss 70.90(↓1.58) 79.72(↓0.71) 80.50(↓0.50)

TABLE VI: Ablation results on discontinuous NER datasets,
‘-’ denotes remove the component alone.

2) Hyper-parameters Ablation.: Here, we conduct the fol-
lowing experiments to evaluate the influence of parameters.

First, we explore the effect of the hyper-parameter K
representing the maximum cycle length in Equation (18), and
Figure 4(a) presents the result on the CADEC. We can see
that with the increases of K, the F1 score first goes up and
then tends to be stable after K≥10. The larger K means more
cycles (entities composed of more pieces) could be included
during training, but the values in sk will also become more and
more sparse. The optimal values of K are different according
to the characteristics of the datasets.

Next, We ablate the hyper-parameter of the loss balancing
weight λ in Equation (19), and the result is show in Figure 4
(b). In our setting, the BCE loss trains the model in line
with the main optimization objectives, while the Cycle Loss
serves as auxiliary optimization that makes the model with
better global awareness. We can see that small λ weakens
the impact of global optimization from complete cycles, while
larger λ puts Cycle Loss in the dominant position, making the
network difficult in sufficient convergence. In this experiment,
the model obtains the highest performance when λ=1.

3) Impact of Entity Length: The predicted entities are con-
structed based on the complete cycle prediction in the graph,
which requires all of the word-level edges to be predicted
in inference. It would bring challenges to our method when
meeting the long entities, e.g., there would be even more

(a) Impact of K in Eq. (18). (b) Impact of λ in Eq. (19).

Fig. 4: The impact of hyper-parameters K and λ on CADEC.

(a) ACE2005 (b) ShARe13

Fig. 5: Impact of entity length on ACE2005 and ShARe13

than 15-word pieces for an entity with a length larger than 7.
We separately calculate the model’s performance on different
entity lengths of two datasets that contain a certain number
of long entities (ACE2005 and ShARe13). The results are
illustrated in Figure 5. From the results, we can find that
the model’s performance goes down along with the entity’s
length increased. It is because there are very few long entities
in the training set, and it is also a common challenge to
all current NER methods [13]. Nevertheless, from the results
demonstrated in the ablation experiments in the main paper,
we can see our proposed module obtains more performance
gain in the dataset with a longer average entity length.

4) Model Complexity Comparison: The parameter number
of current CycleNER model is 321.5M, where the encoder of
BERT-Large is 319.6M and other parts only cost 1.9M. For
[3], it uses BART-Large as pre-trained model, and the total
parameter number is more than 400M. For [14], if it also uses
BERT-Large as encoder, the parameter number would be about
328M. It can be seen that the main calculation of the current
model is mainly form the encoder. Our decoder is currently
a very lightweight design compared with other methods. The



parameters are mainly come from 1) the MLP layers, the rotary
matrix in node level (biaffine and triaffine operations will not
involves new parameters), and 2) the convolution layers in
edge level.

V. CONCLUSION

This paper proposed a concise framework named CycleNER
to uniformly tackle flat, overlapped, discontinuous NER by
converting the entity index sequences into cycles prediction
in the graph. To get the rich graph feature, we proposed
a Graph Feature Enhancement (GFE) module composed of
the correlation information extraction in both node-level and
edge-level. Furthermore, we design a Cycle Loss that aims to
overcome the spurious graph structure problem and prompt
complete cycles formation. We evaluate our method on eight
datasets, including all three types of NER subtasks. The results
show that our method achieves competitive and even new state-
of-the-art performance, and the ablation studies demonstrate
the effectiveness of the proposed modules.
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