

21 - 25 October 2019, Nice, France

HIKVISION You Only Recognize Once: Towards Fast Video Text Spoting

Zhanzhan Cheng^[1,2]; Jing Lu; Yi Niu; Shiliang Pu Hikvision Research Institute^[1]

Fei Wu Zhejiang University^[2]

Shuigeng Zhou Fudan University

> Motivation of This Work

- existing multi-stage pipeline: localize and recognize in each frames, track for text streams, then post-precess. Two problems:
 - excessive computation cost from repetitive recognition
 - unstable recognition results due to low-quality text

Key Component

• mechanism of quality scoring network

 $r^{t} = kmeans(r_1^{cor}, r_1^{cor}, ..., r_k^{cor})$

0.70 DELCCD

- **key idea**: select the highest quality text region from each text stream to be recognized once instead of one-by-one, which:
 - speeds up text spotting by avoiding repetitive recognition
 - leads to more robust recognition results by filtering out low-quality text

> Main Contributions

• an unifed **two-stage** framework YORO consisting of a spatial-temporal

teacher- student architecture

0.89 DELICAL DELICAD

0.35 DELIC

0.48

DEUCA

> Experiments & Ablation

ablation:

 \checkmark performance and speed comparison with other frame selection methods

Methods	QSHR RCR		EDC
	(IC13/IC15)	(IC13/IC15)	ГГЗ
PCW	74.55/75.83	66.06/66.32	4 5 2
HFP	75.32/76.34	68.30/68.56	4.32
$\operatorname{TR}(\mathcal{L}_S)$	77.89/79.69	68.89/69.41	

✓ effectiveness of each module

D-BASE	\checkmark	\checkmark		
D-ST			\checkmark	\checkmark
$\operatorname{TR}\left(\mathcal{L}_{S}\right)$	\checkmark		\checkmark	
TR		\checkmark		\checkmark
PRE_{s}	69.91	72.84	64.88	68.28

detector and a text recommender for fast video text spoting.

a novel text recommender for selecting the highest-quality text from text \bullet streams, then only recognizing the selected text regions once.

Text Recommender

$\operatorname{TR}\left(\mathcal{L} ight)$	81.74/83.29	70.18/70.95			
$\mathrm{TR}\left(\mathcal{L}_S + \mathcal{L}_R\right)$	81.23/83.03	69.92/70.69	524.50	<i>F</i> -score	6
$\operatorname{TR}\left(\mathcal{L}_{S}+\mathcal{L}_{T}\right)$	78.64/80.36	69.12/69.82	324 58	REC_s	54

REC _s	54.34	61.73	61.54	67.21
F-score	61.15	66.83	63.17	67.74

PCW: select with recognition confidence RCR: rate of correctly recognizing selected text regions

D-BASE: single frame detection by east

HFP: select by majority voting

QSHR: quality selection hitting rate

TR($\mathcal{L}_{(*)}$): text recommender trained only with tracking, scoring or recognition loss

comparison with state-of-art:

Methods	REC	PRE	F-measure
Khare et al. [20]	41.40	47.60	44.30
Zhao et al. [58]	47.02	46.30	46.65
Shivakumara [42]	53.71	51.15	50.67
Yin et al. [55]	54.73	48.62	51.56
Wang et al. [52]	51.74	58.34	54.45
D-BASE	56.21	85.76	67.91
D-ST	60.23	81.45	69.25

Method	$MOTP_R$	$MOTA_R$	ATA_R
Stradvision [18]	0.69	0.57	0.29
Deep2Text [18]	0.62	0.35	0.19
Wang et al. [53]	0.70	0.69	0.60
Ours	0.76	0.69	0.63

✓ detection on IC13

✓ end-to-end on IC15

Proposed Dataset (LSVTD)

- existing video scene text datasets: limited scale and scenes, which may restrain research of video scene text spoting.
- our collected dataset:

Datasets	#scenarios	#videos	#frames	#instances	quality?
Merino [28]	4	_	-	_	
Minetto [30]	-	5	3599	8706	
IC13 [19]	7	28	15277	93934	\checkmark
YVT [33]	_	30	13500	_	
IC15 [18]	7	49	27824	—	\checkmark
LSVTD	22	100	66700	569300	\checkmark

a spatial-temporal detector for robustly recall more text by referring to temporal relationship among different frames.

- ✓ 22 indoor/outdoor real-world scenarios (100 videos)
 - \checkmark multilingual
- end-to-end evalations on our dataset.

