Motivation of This Work

- existing multi-stage pipeline: localize and recognize in each frame, track for text streams, then post-processing. Two problems:
 - excessive computation cost from repetitive recognition
 - unstable recognition results due to low-quality text

Main Contributions

- an unified two-stage framework YORO consisting of a spatial-temporal detector and a text recommender for fast video text spotting.
- a novel text recommender for selecting the highest-quality text from streams, then only recognizing the selected text regions once.

Text Recommender

- a spatial-temporal detector for robustly recall more text by referring to temporal relationship among different frames.
- self-attention based aggregation

Key Component

- mechanism of quality scoring network

Experiments & Ablation

- **ablation:**
 - performance and speed comparison with other frame selection methods
 - effectiveness of each module

Proposed Dataset (LSVTD)

- existing video scene text datasets: limited scale and scenes, which may restrain research of video scene text spotting.
- our collected dataset:
 - 22 indoor/outdoor real-world scenarios (100 videos)