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ABSTRACT

Table is a widely used data form in webpages, spreadsheets,
or PDFs to organize and present structural data. Although
studies on table structure recognition have been successfully
used to convert image-based tables into digital structural
formats, solving many real problems still relies on further
understanding of the table, such as cell relationship extrac-
tion. The current datasets related to table understanding
are all based on the digit format. To boost research develop-
ment, we release a new benchmark named ComFinTab with
rich annotations that support both table recognition and
understanding tasks. Unlike previous datasets containing the
basic tables, ComFinTab contains a large ratio of compound
tables, which is much more challenging and requires methods
using multiple information sources. Based on the dataset, we
also propose a uniform, concise task form with the evalua-
tion metric to better evaluate the model’s performance on
the table understanding task in compound tables. Finally, a
framework named CTUNet is proposed to integrate the com-
promised visual, semantic, and position features with a graph
attention network, which can solve the table recognition task
and the challenging table understanding task as a whole.

*Zaisheng, Yi and Liang contributed equally to this research. Yi did
this work during an internship in Hikvision Research Institute.
†Corresponding authors.
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Experimental results compared with some previous advanced
table understanding methods demonstrate the effectiveness
of our proposed model. Code and dataset are available at
https://github.com/hikopensource/DAVAR-Lab-OCR.
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1 INTRODUCTION

Table as a key structure to organize and present data is
widely used in webpages, spreadsheets, PDFs, etc. Studies
on table detection [26, 32, 33, 41, 44] and table recognition
[23, 41, 44–46, 66, 74] have attracted great attention and
been successfully used to convert image-based tables into the
digital structural formats. However, the conversion results
usually only contain the structure-level information. Solving
many real problems still relies on a further understanding
of the table content, such as extracting the entities with the
identified attributes in the table.

The current researches on table understanding are mainly
under relatively simple settings, which can reflect in two
folds. First, studies are mainly conducted based on the digital
format of tables like Spreadsheet or XML [12, 17, 18, 29, 43,
69, 73, 73]. These digital formats whether only contain the
limited textual information [5, 6] or rely on the handcraft
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Figure 1: The examples of (a) three types of basic
tables, which are more easily to extract the infor-
mation based on the structural information, and (b)
the more challenging compound table, in which the
cells belong to the same row/column may have no
semantic relationship.

features [9, 14, 30, 62] like color, font, etc. However, these
features cannot be directly obtained for an image-based table
unless designing extra information extraction tasks, making
the table understanding process in images complicated and
customized. Second, most current works only study the basic
and regular table forms. In [62], authors categorize tables
into three types: relational, entity and matrix tables, as
shown in Figure 1(a). The main basis of classification is
whether the table contains the head keys in column/row.
However, tables in the real world can have more varied and
free structures. For example, Figure 1(b) demonstrates a table
from a financial report. This table is actually compounded
by several small basic tables with different types, making the
relationships among cells complex and difficult to extract by
simple heuristic rules.

The current public datasets of tables can be roughly divid-
ed into the image-based [15, 16, 19, 32, 34, 38, 74] and the
digital-format-based [12, 17, 18, 29, 43, 69, 73, 73]. Although
some of them contain the challenge table with complicat-
ed structures when cells cross span multiple rows/columns,
they still cannot fully cover scenarios in real life that require
tabular understanding. On the one hand, these image-based
datasets mostly focus on visual perception tasks like structure
recovery. On the other hand, in both types of these datasets,
the vast majority are basic tables.

To boost the development of research on table understand-
ing and help the technique support a more comprehensive
range of tables in the actual product, we collect a new image-
based benchmark named ComFinTab that supports both
table recognition and understanding tasks. The dataset con-
tains 10k images collected from the public financial state-
ments of the listed companies in two languages (4k English
and 6k Chinese). We carefully select the represented tables
to make the dataset involve more than 70% complex com-
pound tables. We provide complete annotations, including
the textual location, textual content, cell location, cell type,

and cell relation. All annotations are automatically extracted
by the existing tools or processing scripts and then manually
rectified by people.

Table understanding is somehow a broad concept that
might include different task forms such as table type classifi-
cation [9, 14, 30, 62], cell type classification [17, 20, 58, 62],
column type identification [3, 21], entity linking [27], and Ta-
ble QA [25, 43, 68]. However, these task forms are not unified
under different datasets or settings. For example, although
both are cell classification tasks, [17] and [12] have different
cell category definitions. We also find that some tasks can
be derived from each other to some extent. For example, we
can easily infer the table type and entity’s links by obtaining
the cells types in the basic tables. Therefore, we attempt
to establish a concise and unified task form and evaluation
metric for the proposed dataset. Specifically, we define the
basic table item as a tree, where the root node is a ”data”
cell, and the left and right sub-tree store the ”left header” cell
information and ”top header” cell information, respectively.
Each basic table item represents a piece of information, which
together constitute all the information conveyed by the table.

To solve the challenge table understanding problem in the
compound tables, in this paper, we propose a framework
named CTUNet (Compound Table Understanding Network)
that utilizes different modality features, including visual,
textual, and position information. The idea is mainly based
on the findings that people can utilize multiple dimensions
of information to understand complex tables. In addition to
the basic alignment features, many other visual clues can
also help people quickly obtain the information, such as
the cells’ color shown in Figure 1(b). Nevertheless, even if
there is no separable color, we can still understand the table
to a large extent since the text can also deliver important
messages. Therefore, in CTUNet, we establish features that
fuse multiple modalities for each cell and then make full
use of the structural characteristic of the table to fuse and
transfer these features by a Graph Attention Networks [60].
The final items can be directly inferred by the node and edges
categories of the output graph. Experiments compared with
the previous modeling methods demonstrate the effectiveness
and robustness of our proposed framework.

The major contributions of this paper are as follows: (1)
We establish and release a new image-based dataset with
rich annotations for the table understanding tasks, including
many challenging compound tables. (2) We propose a concise
and uniform task form with the evaluation metric for the
table understanding task, which can be applied to almost all
previous datasets. (3) We propose a novel table understanding
framework that utilizes visual, textual, and position features.
The experimental results demonstrate its effectiveness and
robustness.

2 RELATED WORK

2.1 Table Recognition

Image-based table recognition task aims to obtain the struc-
tural information with the content in the table. Due to the
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challenge of the table with varied structures, most works
related to table recognition focused on the structure recog-
nition task and directly adopted the existing OCR engines
[13, 53].

Current table structure recognition methods can roughly
be divided into three types. The first group of methods
[49, 51, 52] starts by detecting the row and columns of a
table and then merges these two parts to obtain the cells.
To handle the cells crossing multiple rows/columns, [59, 71]
predicts another indicator to merge the separated cells. The
second group of methods [8, 28, 34, 37, 38, 45–47, 66] first
detects the cells or text regions and then predicts the relations
among these items. According to the underlying alignment
information in the table, [38, 46, 47] aim to obtain more
accurate aligned cells which can be effectively used to infer
the final structure. [34, 37, 45, 66] treat these cells as nodes
in a graph and train another Graph Neural Network (GNN)
to predict the relations. The last group of methods [67, 74]
directly obtain table recognition results from the original
image based on an encoder-decoder architecture. [74] first
uses the Image-to-Sequence architecture to predict a long
sequence representing table structure and content together.
To address the problem of sequences being too long, [67]
predicts sequences only representing the table structure and
provides position predictions for each cell identifier in the
sequence. A separate OCR model obtains the text contents.

Table structure recognition technology has made significant
progress in recent years, partly thanks to the public of some
valuable datasets [8, 15, 16, 19, 32, 34, 38, 50, 54, 72, 74].
For example, [74] first releases a large-scale scientific table
benchmark that contains a large part of gridless challenge
tables, which effectively promotes the development of data-
driven methods. [38] first studies the tables in the natural
scene, requiring a higher model detection accuracy. All the
above works are primarily based on the basic tables, and
extracting the information can sometimes support by simple
rules. However, in the compound tables, cells with the same
column/rows might match with keys, which is a challenging
scenario.

2.2 Table Understanding

Current research on table understanding can be roughly
divided into two categories according to the purpose of the
task.

The first type of method aims to parse the natural lan-
guage in the tabular data, where the table appears as a carrier
of texts. There are two typical types of task forms: 1) table
question answering(Table QA), which is a task that requires
models to understand tables and natural language questions
jointly and enable robust reasoning over tables. These works
are mainly focused on the table with relatively simple struc-
tures such as the relational table in database [61, 69, 73] or
relational web tables [43, 57]. 2) Table-to-text, whose target
is to generate textual descriptions from structured tables
[1, 2, 4, 31, 35, 40, 42, 55, 63]. For example, NumericNLG
[55] proposes to generate reasoning-aware paragraph-level

descriptions for tables in scientific papers. HiTab [7] first-
ly introduces hierarchical tables as the generation context,
posing new challenges compared with previous datasets.

The other category of the method is usually built based on
the structural information of the table, which aims further to
determine the function of cells and their logical relationships.
These works mainly contain the task forms like table type
classification to categorize tables into different structural
types [11, 18, 39, 62], cell type classification to identify cell
types in the table [12, 17, 29], and cell linking to map the
keys in a table with the data items [27]. Although the above
tasks have different task targets, they can be converted to
each other in the case of all basic tables.

3 TABLE UNDERSTANDING TASK
ON COMFINTAB

3.1 Dataset Collection

The current public table datasets are primarily focused on
the basic tables, where all the keys are only displayed on the
top or left of the table, i.e., relational table, entity table,
and matrix table [62]. To investigate the table understanding
task in the more general and complicated situations, we
collected a new dataset named ComFinTab. The dataset
contains 10,000 images from the annual reports of the Chinese
listed companies in both the Shanghai and Shenzhen Stock
Exchanges. Some companies have released annual reports in
both Chinese and English versions so that the dataset can be
separated by language as 6,000 Chinese and 4,000 English.
Different from previous tables, we pay more attention to the
compound tables images. A compound table is a table that
is integrated by more than two basic tables A comparison
of ComFinTab with previous representative benchmarks is
shown in Table 1.

ComFinTab provides annotations that support both table
recognition (cells local, cells column/row indexes, textual
position, and textual content) and table understanding tasks
(cells type, cells linking). The annotations are firstly generated
by the tools and manual scripts and then carefully adjusted
by people. Specifically, we can summarize the process in five
steps: 1) We first locate the tables and crop them from the
PDF files using a bordered tables detector, and cell locations
can also be obtained by crossing the lines in tables. Some error
predictions will be filtered out manually. 2) Since all of the
tables are horizontally displayed, we adopt the cell matching
strategy in [46] to generate the column/row indexes. 3) The
PDF tools (like PDFPlumber) can easily extract the textual
locations and contents. 4) For the cells type, we first select the
tables that contain cells in different colors and automatically
label them. Then, we use these samples to train a simple text
classifier (only using the text content) to assign the pseudo
labels for the other tables. At last, we manually clean all the
labels. 5) Given the cells type information, The cells linking
annotations are firstly generated by the heuristic rules that
all values are displayed on the right or bottom of the keys.
We also have to clean these annotations manually since rules
usually fail in many complicated situations.
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Table 1: Comparison with public table datasets. The top part contains the datasets based on the image for
the table recognition task, and the bottom part are the datasets for table understanding tasks.

Dataset
Compound
Table Ratio

Format Amount Language
Annotations

Cells
Location

Textual
Location

Textual
Content

Columns/
Rows Indexes

Cells
Type

Cells
Linking

UNLV[50] 0 image 427 English X X X
ICDAR2013[19] 0 image, pdf 150 English X X X
ICDAR2019[16] 0 image 2,000 English X X X
PubTabNet[74] ¡ 2 % image 568,000 English X X X X
SciTSR[8] ¡ 2 % image, pdf 15,000 English X X X
FinTabNet[72] ¡ 2 % image, pdf 113,000 English X X X
TableBank[32] ¡ 2 % image 417,234 English X
PubTables-1M[54] 0 image, pdf 1M English X X X X
WebSheet[12] 0 spreadsheet 3,503 English X X X
SAUS[17] 0 spreadsheet 210 English X X X
CIUS[17] 0 spreadsheet 268 English X X X
DeEX[29] 0 excel 216 English X X X
Spider[69] 0 json, sqlite 200 English X X X
WikiSQL[73] 0 json, db 24,241 English X X X
WikiTableQuestions[43] 0 csv, html 2,108 English X X X
HybridQA[6] 0 csv, html 13,000 English X X X X
TabFact[5] 0 csv, html 16,573 English X X X X
ComFinTab ∼70 % image 10,000 English & Chinese X X X X X X

3.2 Uniform Table Understanding Task

The target of visual table understanding is to extract useful
information. Previous works defined different table under-
standing tasks, such as table type classification [9, 14, 30, 62],
cell type classification [17, 20, 58, 62], cell relation linking
[27], Table QA [25, 43, 68]. Without considering the compli-
cated questions involving logical reasoning in Table QA, we
attempt to find a uniform task target that can be used in the
proposed compound table dataset and previous basic table
datasets.

Referring to the existing taxonomies of cell types [12,
17, 29, 62], we define cells into four general categories: Top
Header (TH), Left Header(LH), Data (DA), and Other(OT),
as shown in Figure 2. In a table, the headers TH and LH
serve as the key to lead out a group of items, and DA is the
value that stores the specific information. The TH and LH
can be organized in hierarchical ways. We simply ignore the
cells that cannot be categorized into TH/LH/DA and define
them as OT, which might provide additional information
like table title, metadata, comments, etc. In a 2D table, we
have to use the keys in both TH and LH to locate a piece
of information uniquely. Noticing that tables might lack one
of the heads, we define the virtual heads that indicate the
row/column indexes. This definition actually fits the habit of
people reading tables. For example, in the bottom of the sub-
table (which can be treated as a relational table) shown in
Figure 2, to uniquely identify the value of “-6753595187.64”,
we might ask the question like “ What is the Consolidate
Balance Sheet Items’s Adjustment ’s value in 6-th row?” In
this way, cells with the same virtual left head can be correctly
associated.

Given the cells categories, we can define the uniform target
to find all the table items for a given table image, named
table items extraction. A table item can be represented by a
tree where the root node is the specific DA cell, and the left

TH

OT

DA

(Virtual)

LH
virtual LH6 “Adjustment”

“Consolidate …”

Figure 2: An example of cells type (left) and a basic
table item represented by a tree (right).

and right sub-tree store the LH and TH information with
hierarchy, respectively. The leaf nodes denote the leftmost or
topmost heads in a basic table. If there is no LH or TH, we
use virtual heads to represent it, as an example illustrated
in Figure 2. The form of table item contains information on
cell types and relations, which can be transferred into almost
all the results of the previous task forms designed for basic
tables.

Evaluation Metric. Based on the task objective, the
performance can be simply defined as the F1-Score of all
the predicted table items compared to the ground truth.
Nevertheless, predictions can be flawed to varying degrees.
Inspired by [74], we use Tree-Edit-Distance-Based Similarity
(TEDS) to denote the matching degree of two tables. So, the
new metric of Tree-F1-Score can be calculated as:

Tree-R =

∑︀
𝑡𝑖∈𝒯𝐺

TEDS(𝑡𝑖, 𝑡
′
𝑖)

||𝒯𝐺||
(1)

Tree-P =

∑︀
𝑡′𝑖∈𝒯𝑃

TEDS(𝑡′𝑖, 𝑡𝑖)

||𝒯𝑃 ||
(2)
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Tree-F1 =
2× Tree-R × Tree-R

Tree-R + Tree-P
(3)

where 𝒯𝑃 and 𝒯𝐺 denote the predicted and ground-truth tree
set, respectively. 𝑡′𝑖 is the item in 𝒯𝑃 having the same root
with 𝑡𝑖 in 𝒯𝐺. If the corresponding node cannot be found in
the counterpart set, the TEDS is 0.

4 COMPOUND TABLE
UNDERSTANDING MODELING

Based on the task form mentioned above, we propose a
novel framework that supports both table recognition and
understanding tasks, named Compound Table Understanding
Network (CTUNet). The overview of CTUNet is shown in
Figure 3, which can be separated into four parts: (1) The
Table Element Extraction part aims to obtain the cell’s
location, text’s location and content. (2) The Structural
Graph Construction process sets up the spatial relationships
between cells for the table according to the cell’s location. (3)
A Multi-modal Feature Fusion module integrates the visual,
textual, and position features extracted from the previous
Table Element Extraction module. (4) The final Relational
Graph Construction module predicts the semantic relations
among cells, integrating a Masked Self-Attention module to
enhance the graph feature in each node. It is in charge of
outputting the definitive collection of table items. The overall
framework is trained end-to-end (excludes the OCR part),
which makes the table recognition and understanding tasks
benefit each other to a large extent.

4.1 Table Elements Extraction and
Structural Graph Construction

The Table Elements Extraction (TEE) and Structural Graph
Construction (SGC) modules together implement a basic
table recognition process. Similar to previous works [8, 38,
46, 49, 51], the text content and structure information are
obtained separately.

For the structure information, we first train a Faster-RCNN
[48] model to detect the location of the cells, which is different
from the text location. Cells contain the direct alignment
information to construct the spatial relationships in rows and
columns. Since all the tables are extracted from PDF files
and all horizontally aligned, we adopt the post-processing of
cell matching in [46] to construct the cells relations. Specifi-
cally, the criterion for connecting cells can be summarized as
follows: If the two cells’ bounding boxes have more than 50%
overlapping in the 𝑥 dimension, they will be connected in a
vertical direction. A similar process can be conducted in the
horizontal direction.

We adopt the offline OCR engine to extract the text lo-
cation and content. Since a cell may contain multiple lines
of text, we conduct a box-matching process to match the
text’s bounding boxes with the cells and combine the text
contents that belong to the same cell. Specifically, we will
match the text bounding boxes with the cell box with the
highest Intersect-Over-Union (IOU) and combine the textual
content from top to bottom according to the 𝑦 coordinate.

4.2 Multi-Modal Feature Fusion

To fully understand a table, the information provided by a
single modal is somehow limited. Similar to most previous
work to understand document[56, 64, 65, 70], we summarize
useful information into three feature modalities: position
feature, visual feature, and textual feature.

Position Feature.Given the predicted cells 𝒞={𝑐1, 𝑐2, ..., 𝑐𝑁}
where 𝑁 is the number of cells, we denote the bounding box-
es for cell 𝑐𝑖 as 𝑏𝑖=(𝑥1, 𝑦1, 𝑥2, 𝑦2). The position feature is
introduced by embedding the positions into a feature se-
quence, which can be formed as 𝑃𝐸𝑖=𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑏𝑖), where
𝑃𝐸𝑖∈R𝑑𝐹 and 𝑑𝐹 is the feature dimension.

Visual Feature. We conduct the RoI-Align operation to
crop the detected cell regions from the high-level feature
map of the cell detection network. All the feature maps will
be resized into a fixed shape, denoted as {𝑓1, 𝑓2, ...}. The
final visual feature map for 𝑖-th cell can be obtained as
𝑉𝑖=𝐿𝑖𝑛𝑒𝑎𝑟(𝐶𝑜𝑛𝑣𝑠(𝑓𝑖)), where 𝐶𝑜𝑛𝑣𝑠() is a stack of convolu-
tion layers and 𝐿𝑖𝑛𝑒𝑎𝑟() operation transfers the feature into
the shape of R𝑑𝐹 .

Textual features. The textual feature contains the un-
derlying habits of people using language, especially in the
financial field. To dig out the patterns in the language and
help in improving the table understanding, we adopt BERT
[10] to extract the textual content of the cell (BERT-Chinese
for ComFinTab-Chinese) and obtain the final textual feature
embedding, denoted as 𝑇𝑖 ∈ R𝑑𝐹 .

To support the following relation prediction, the initial
feature of the 𝑖-th cell is generated by concatenating all three
features and then normalizing it as follows,

𝐹𝑖 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑃𝐸𝑖 + 𝑉𝑖 + 𝑇𝑖). (4)

4.3 Relational Graph Construction

In the Relational Graph Construction (RGC) module, we
treat each cell as a node in a graph. The task of table item-
s extraction can be transferred into predicting the nodes’
classification and the existing edges between nodes.

To ensure that each ‘DA’ node has corresponding edges in
both directions, we will create the virtual ‘LH’ or ‘TH’ nodes
when some sub-tables are missing a certain type of head. The
virtual nodes are generated according to the maximum col-
umn/row numbers from the structural information provided
by the previous SGC module. The positions of the virtual
nodes will be assigned as the small empty regions extended
from the left-most or top-most cells, as shown in Figure 2.
The visual and textual features will be filled with default
values.

Given the fused feature of each node, we adopt the masked
self-attention mechanism in the graph attention network [60]
to further enhance the node features by aggregating the
neighbor’s information. Specifically, for the 𝑖-th node, the
enhanced feature 𝐹 ′

𝑖 can be calculated as follows,

𝑒𝑖𝑗 = LeakyReLU
(︁
𝑤𝑇 [︀𝑊𝐹𝑖

⃒⃒⃒⃒
𝑊𝐹𝑗

]︀)︁
(5)
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Figure 3: Overview of the CTUNet framework. It contains (1) a Table Element Extraction module to extract
the basic elements in a table, including the cell location, text location and content; (2) a Structural Graph
Construction module used to infer the structure of the table; (3) a Multi-modal Feature Fusion module that
integrates the visual, textual and position features to obtain a comprehensive feature embedding; (4) the
Relational Graph Construction module to predict the semantic relations among cells and outputs the final
collection of table items.

𝛼𝑖𝑗 = softmax𝑗(𝑒𝑖𝑗) =
𝑒𝑥𝑝(𝑒𝑖𝑗)∑︀

𝑘∈𝒩𝑖
𝑒𝑥𝑝(𝑒𝑖𝑘)

(6)

𝐹
′
𝑖 = 𝜎

⎛⎝∑︁
𝑗∈𝒩𝑖

𝛼𝑖𝑗𝑊𝐹𝑗

⎞⎠ (7)

where [.||.] is the concatenation operation, 𝑤 is a single-layer
feed-forward neural network transformation, 𝑊 is the weight
matrix, and 𝒩𝑖 is the collection of i-th node’s neighborhood
in the graph. 𝐹 ′

𝑖 ∈ ℱ is the enhanced node feature with
shape of R𝑑𝐹 . Expressly, we set the neighborhood of node
𝑖 as all nodes that are connected with it in the structural
graph generated in the SGC module, i.e., the nodes having
the same row or column with node 𝑖. This setting is based
on the prior knowledge that if two nodes are not connected
structurally, they must not be connected semantically.

After getting the aggregated features for each node, we
concatenate the features of each cell pairwise to get the edges
features:

ℰ =

⎡⎢⎣𝐸1,1 · · · 𝐸1,𝑚

...
. . .

...
𝐸𝑚,1 · · · 𝐸𝑚,𝑚

⎤⎥⎦ (8)

𝐸𝑖,𝑗 = [𝐹 ′
𝑖 ||𝐹 ′

𝑗 ] (9)

where 𝑚 is the total node number, 𝐸𝑖,𝑗 ∈ R2𝑑𝐹 is the edge

feature between node 𝑖 and 𝑗 and ℰ ∈ R𝑚2×2𝑑𝐹 .
Then, the RGC module will be simultaneously trained with

three tasks, a node classification task and the edge classifi-
cation tasks separately in horizontal and vertical directions,
named Row Relation Linking and Column Relation Linking.

Specifically, based on the node features ℱ and edge feature
ℰ , the final prediction of three branches can be formed as,

𝑃𝑛𝑜𝑑𝑒 = softmax(𝐹𝐶(ℱ)), (10)

𝑃𝑟𝑙𝑖𝑛𝑘 = sigmoid(𝐹𝐶(ℰ)), (11)

𝑃𝑐𝑙𝑖𝑛𝑘 = sigmoid(𝐹𝐶(ℰ)), (12)

where 𝐹𝐶() is a fully-connected layer, 𝑃𝑛𝑜𝑑𝑒, 𝑃𝑐𝑙𝑖𝑛𝑘 and 𝑃𝑐𝑙𝑖𝑛𝑘

denote the predictions of node classification, column relation
linking and row relation linking, respectively.

In the post-processing, we will combine the classification
results of the nodes and edges to form the definitive collection
of table items, where we only consider the cells that belong
to the ‘DA’ type. Notice that although we can also generate
the virtual nodes and links in the post-processing according
to the tables type, involving the virtual nodes in the graph’s
feature modeling can effectively prevent cells from being
connected with the fake heads.

Optimization. In addition to the OCR engine used to
extract the textual contents and locations, the framework
can be trained end-to-end. The overall loss can be formed as,

𝐿 = 𝐿𝑑𝑒𝑡 + 𝜆1𝐿𝑛𝑜𝑑𝑒 + 𝜆2(𝐿𝑟𝑙𝑖𝑛𝑘 + 𝐿𝑐𝑙𝑖𝑛𝑘), (13)

where 𝐿𝑑𝑒𝑡 is the loss for cell detection network and 𝐿𝑛𝑜𝑑𝑒,
𝐿𝑟𝑙𝑖𝑛𝑘, 𝐿𝑐𝑙𝑖𝑛𝑘 are the cross entropy losses that used in the
node classification and two edge classification tasks.

5 EXPERIMENT

5.1 Experimental Settings

Implementation Details. The backbone of our model is
a 50-layer ResNet [24], followed by the FPN [36] to further
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enhance features. For all benchmarks, the model is trained by
the SGD optimizer with batch size= 4, momentum=0.9, and
weight decay= 1×10−4. The initial learning ratio is 1×10−3,
which is then divided by 10 every 20 epochs. All experiments
are implemented in Pytorch with 8 Tesla-V100 GPUs.

We split the training / testing set as 4500/1500 images
for the ComFinTab-Chinese dataset and 3200/800 images
for ComFinTab-English data, respectively. Because the table
layout from the same company may be similar to each other,
to ensure that the model does not overfit into certain formats,
we follow [72] to separate the dataset at a company level.
Compared Methods. Under the new task form mentioned
above, no previous work can be directly compared. So we set
up the following two compared experimental settings.

(1) Cell Classification + Rules. Previous works on table
understanding provide support for cell-type classification.
So we select one of the current advanced methods, TUTA
[62], which is a pre-trained language model-based method
designed for tables. We fine-tune the model on the task of cell
classification and then use carefully designed handcraft rules
to achieve cell relation linking. The basic idea of the rule is
to match the header cells with the cells in their right/bottom
of the same rows/columns. Since TUTA is an English pre-
trained model, we only report its result on ComFinTab-
English. Moreover, we also compare another SOTA document
understanding approach for the cell classification task using
multi-modal information, LayoutLM v2[65].

(2) End-to-End Relation Extraction. To reduce the error
impact of manual rules, we consider an alternative end-to-end
approach. We find that the output of the relation extraction
task in NLP, usually in a triple form like (’Entity A’, ’Re-
lation’, ‘Entity B’), can represent a cell link status in the
table to a large extent. Specifically, for a table item represent-
ed by a tree, we convert it into several triples like (‘DA 1’,
‘Left-Linking’, ‘LH 1’), (‘DA 1’, ‘Top-Linking’, ‘TH 1’), where
‘Left-Linking’ and ‘Top-Linking’ are pre-defined two relation
types. We can make the ground truth for the hierarchical
head as (‘LH 1’, ‘Left-Linking’, ‘LH 2’). In this way, we can
build the model with an end-to-end relation extraction task
target where each node can be treated as a token in sequence.
Here, we compare our model with one of the advanced meth-
ods AGCCN [22]. We also introduce the multi-modal features
in AGCCN for a fair comparison.

All the methods use the same textual information extracted
by the OCR engines, i.e., PaddleOCR [13] for ComFinTab-
Chinese and Tesseract [53] for ComFinTab-English. To elimi-
nate the impact of errors in OCR and structural recognition
to evaluate the pure table understanding ability, we also
report the result of the model using the ground truths of
OCR and cell locations, denoted as ‘Ours(GT)’.

5.2 Results

The experimental results are shown in Table 2. We also report
the table recognition result of our method as a reference using
the metric of TEDS [74]. The TEDS results show that the

current data set is relatively simple for the table recognition
task since most tables have visible grid lines.

We separately report the performance of the understand-
ing task using metrics of the Macro-F1 score for cell-type
classification and the proposed Tree-F1-Score for table item
extraction. We can see that the differences in performance
of the cell classification task between models are relatively
small. Although TUTA achieves the best F1 score in this
task, it has been pre-trained on large table datasets. For the
performance of table item extraction, although the rule-based
settings (TUTA+rule, LayoutLM v2+rule) obtain satisfied
cell classification results, they are easy to be failed in the
relation extraction in the compound table datasets. In con-
trast, the end-to-end setting of AGCCN can eliminate the
error generated by the heuristic rules to some extent. Our
proposed model is also an end-to-end framework which makes
full use of the table structural information. It can transmit
the multi-modal feature among cells and predict the rela-
tions in a uniform and intuitional task target, resulting in
better results. The above experimental phenomena remain
consistent when we use the ground truths of OCR and cells.

Figure 4 has shown some visualized images. Different im-
ages might need different clues to understand their compound
structure. For example, in the first image, the background
color of cells provides a clear signal for cell-type classifica-
tion. However, in the second image, the cell type and their
relations should be more inferred from the layout and se-
mantic information. The third image shows a failure case
in that our model misjudges the type of cell in the second
row. It is because the background color information somehow
misleads the model. Nevertheless, our model shows strong
ability and adaptability to compound tables from the results
demonstrated above.

5.3 Ablation Studies

In order to better observe the contribution of our proposed
modules to the table understanding task, the following abla-
tion experiment is based on ground truths of OCR and cell
location.

Ablation on Multi-Modal Features. We conduct the
ablation experiments to verify the contributions of the multi-
modal features, whose results are shown in Table 3. The
results show that if there is no position feature, the accuracy
will be reduced dramatically. It is because the table itself is a
highly structured data form, where the alignment information
is one of the fundamental characteristics. Furthermore, for
both visual and semantic features, any one of them can
improve the model’s performance to some extent because they
can add much important extra information for understanding.
The model can achieve the best performance when integrating
all three modality information. Moreover, for the visual and
semantic feature, no matter which modality is missing, there
will be at least a 5% performance drop in the accuracy for
the table item extraction task. However, for the cell type
classification task, such decant was only about 1.5%. It shows
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Table 2: Table item extraction results on ComFinTab-English and ComFinTab-Chinese. Methods labelled
with (GT) means to use the ground truths of OCR and cells location.

Methods
ComFinTab-English ComFinTab-Chinese

TEDS Cell-F1 Tree-P Tree-R Tree-F1 TEDS Cell-F1 Tree-P Tree-R Tree-F1

TUTA [62] + rule - 92.38 72.68 73.14 72.91 - - - - -
LayoutLM v2 [65] + rule - 91.93 72.03 72.07 72.05 - 91.67 71.72 71.66 71.69

AGCCN [22] - 91.64 85.23 84.11 84.67 - 91.38 84.98 83.31 84.14

Ours 98.99 92.27 89.02 89.38 89.20 98.83 91.78 87.11 86.86 86.98

TUTA (GT) [62] + rule - 93.01 74.12 74.05 74.08 - - - - -
LayoutLM v2 (GT) [65] + rule - 92.72 72.99 73.85 73.42 - 92.14 73.73 73.87 73.80

AGCCN (GT) [22] - 92.50 87.16 85.21 86.17 - 91.92 87.28 84.92 86.08

Ours(GT) 99.93 92.98 90.45 90.30 90.37 99.89 92.45 89.25 88.55 88.90

OT cellDA cell LH cell TH cell virtual LH cell virtual TH cell to-left link to-top link

Figure 4: Visualization of some samples in ComFinTab with the predicted cell types and cell links. Better
viewed in color.

(a) position (b) position + visual (c) position + visual + semantic

Figure 5: Some visualization examples that use different modality features. Better viewed in color.

that table item extraction is a more challenging task requiring
tight integration of model information.

Figure 5 shows a visualized comparison that use different
modality information. If we only use the position information,
the model predicts only based on the alignment information,
which easily misjudges the cell type. After adding the visual
feature, the model can obtain the visual features like color to
predict better. However, the relationship predictions are still
wrong since some aligned cells actually belong to different

sub-tables. Finally, we can obtain the exact result when the
model integrates with all three modalities.

Ablation on Relational Graph Construction Mod-
ule. In the RGC module, we adopt the masked self-attention
mechanism in the graph attention network to enhance the
node and edge features. During the node feature updating in
the graph attention network, a node will aggregate the fea-
tures from all its neighbors. So choosing different neighbors
will have different results. Table 4 demonstrates the results
on using different node neighborhood settings. In the table,
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Table 3: The results of the ablation on different
modality features. (E) means ComFinTab-English
and (C) means ComFinTab-Chinese.

Position - X X X X
Visual X - X - X

Semantic X - - X X

Cell-F1 (E) 89.23 87.80 91.35 91.55 92.98
Tree-P (E) 50.33 79.91 86.25 85.63 90.45
Tree-R (E) 30.44 78.53 85.40 84.10 90.30
Tree-F1 (E) 37.93 79.21 85.82 84.68 90.37

Cell-F1 (C) 87.93 86.55 91.28 91.49 92.45
Tree-P (C) 37.68 79.14 85.33 84.60 89.25
Tree-R (C) 26.81 78.05 84.48 83.68 88.55
Tree-F1 (C) 31.32 77.56 84.90 84.13 88.90

Table 4: Results on different node neighbors in the
structural graph.

Neighbor
Settings

ComFinTab-English ComFinTab-Chinese
Cell-F1 Tree-F1 Cell-F1 Tree-F1

None 91.70 88.19 91.71 87.64
1-step 92.10 89.35 92.04 88.46
All 92.22 89.66 92.08 88.53

Row/Column 92.98 90.37 92.45 88.90

‘None’ means without doing any feature aggregation, ‘All’
means aggregating all other nodes’ features in a complete
graph, ‘1-step’ considers the cells spatially direct adjacent
to the current cell as neighbors, and ‘Row/Column‘ is our
model’s setting, which regards the cells belong to the same
row/columns as neighbors. Comparing ’None’ result and the
others, we can easily see the effectiveness of the self-attention
operation. No matter what kind of neighbor node is used,
the introduction of self-attention can improve the accuracy.
Among them, our setting achieves the best performance since
it involves strong prior knowledge about the correspondence
of the rows and columns.

6 CONCLUSION

This paper establishes a new image-based dataset, ComFinTab,
with rich annotations for the table recognition and table
understanding task, including many challenging compound
tables. In order to better adapt to the compound tables,
a concise and uniform table understanding task with the
evaluation metric is proposed, which can also be applied to
almost all previous datasets. Finally, we propose a novel table
understanding framework, named CTUNet, for this dataset
that makes full use of visual, semantic, and position features.
CTUNet integrates a graph-attention network to further en-
hance the features and train with two table understanding
tasks end-to-end. The experimental results demonstrate the
effectiveness and robustness of our proposed model.
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